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Abstract:  

 

Side channel attacks can reveal secrets during program 

execution, or change the behaviour of a program. Without 

profound knowledge of these attacks it is hard to defend code 

effectively. Whereas traditional secure programming methods 

focus mostly on input validation and output control, side 

channel security requires pervasive protection throughout the 

code. This paper introduces a collection of secure programming 

patterns for security critical devices. These patterns help 

developers to mitigate the risk of side channel attacks. 
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1 Introduction 

While patterns and guidelines for programming, and especially secure programming, have existed 

for a long time [10,11], most of the patterns used in practice focus on logical vulnerabilities such as 

lack of input checking, or promote maintainable code writing [3]. This paper discusses secure 

programming patterns (or: secure programming guidelines) intended to harden embedded software 

against side channel attacks. 

Side channel threats are different from logical threats. They are more pervasive, and hardening code 

against side channel attacks requires a different way of viewing one’s source code. At any point in 

time during program execution, a side channel attack can succeed in changing program behaviour or 

in identifying secret information. Defensive measures therefore need to be implemented throughout 

the code. 

Smart cards are typically designed to run in a hostile environment and these have been threatened 

by side channel attacks for over ten years. Smart cards use effective countermeasures against these 

attacks. Protection against side channel threats also becomes relevant for other devices with the 

increase of secure functions in other devices. Examples are infotainment and telematic systems used 

in automotive industry, mobile phones, set-top boxes, printers, payment terminals and medical 

equipment. In addition, with the level of logical security rising in most (consumer) devices, we expect 

that adversaries will more and more start using side channels to attack a device. 

So far, there has been little guidance to application developers in this field. Effective protection 

requires a mix of countermeasures at hardware, operating system and application level. In this paper, 

we focus on the application level.  

Programming patterns provide solutions to common problems rather than defining a methodology 

for solving all problems in one domain. We formulate our patterns in a generic manner so that they 

hold for any language or operating system. In the accompanying coding examples, we use C and Java 

to illustrate the pattern.  

Manufacturers in the smart card field as well as technology-licensing companies have developed 

countermeasures for hardware and cryptographic implementations. Some countermeasures are 

proprietary to these companies and are not publicly known. All information and concepts in this 

paper are based on information that is commonly and publicly known amongst side channel 

specialists. 

The remainder of this paper consists of the following. First, an introduction to side channel attacks is 

given in Section 2. Then, a number of leakage patterns are presented, dealing with the aspect of 

confidentiality. Next, a number of fault injection patterns are presented dealing with the aspect of 

integrity. Finally, the paper discusses application of the patterns in Section 5 and draws some 

conclusions in Section 6. 

An earlier version of this paper was made in collaboration with Martijn Oostdijk, who can now be 

reached at Martijn.Oostdijk@novay.nl. 
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2 Side channel attacks 

Side channel attacks are well-known in the smart card community, and less known outside of it. Most 

developers have however heard of timing attacks. The report in 2003 by Boneh and Brumley of a 

timing attack on SSL over the network [1] is an example of an attack that received widespread 

attention in the developer and security community. The principle of a side channel attack is as 

follows. Rather than attacking the system via the regular input/output, an adversary abuses an 

unintended communication channel to attack the system. Hence the term side channel is used. In 

most cases, this requires that the adversary has physical access to the system. Consumer devices with 

a security function, such as smart cards, set-top-boxes, mobile phones and access control tokens, 

are therefore ideal candidates for an adversary with side channel attack skills.  

Examples of commonly abused side channels include: 

 Time: the time needed to complete certain operations. 

 Power: the power available to and used by a device. 

 Electro-magnetic radiation: EM radiation produced by a device. 

These channels can be abused via two methods: 

 Side channel analysis (i.e. data leakage): the attacker passively listens in on one of the side 

channels in the hope that some sensitive data leaks. 

 Fault injection: the attacker introduces faults to change the behaviour of the device by actively 

manipulating the side channel.  

2.1 Data leakage 

Side channel analysis involves several techniques that may be applicable depending on the nature of 

the program running in the device. The two most common techniques are:  

 Simple analysis: The attacker observes the side channel to see if confidential information is 

directly visible from the measurements. It may be possible to distinguish instructions or even a 

better signal to noise ratio. Depending on the measured side channel, this is called Simple Power 

Analysis (SPA) or Simple Electro-Magnetic Analysis (SEMA). 

 Differential analysis: The attacker typically collects a large number of traces (i.e. >1000) and uses 

statistical analysis to demonstrate internal relationships through correlation. This information is 

subsequently used to derive secrets. Depending on the measured side channel, this is called 

Differential Power Analysis (DPA) or Differential Electro-Magnetic Analysis (DEMA). 

The picture below shows the power profile of a weak RSA implementation. The short and long 

intervals correspond to modular square and multiply operations. The distinction of these operations 

allows full key retrieval. This attack is an instance of SPA. 

Figure 1: Example of a trace measured during an RSA execution 
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In differential analysis [6,8] the attacker uses statistical differences between large numbers of 

samples in order to retrieve secrets. This approach can be successful when the individual samples 

leak too little information to allow SPA. The method requires the acquisition of a number of traces. 

Subsequently the traces are partitioned in two different groups, depending on one bit in the 

expected intermediate data. Taking the average of the traces within each group and subtracting 

them yields a differential trace. This differential trace will show a peak where the intermediate data is 

processed. If the intermediate data is known it will show where and how the data is used. The attack 

gets more interesting when applied to unknown intermediate data that is related to a few key bits. In 

that case it may be possible to guess the intermediate data if the number of involved key bits is 

relatively small. By computation and comparison of various differential traces (for each value of the 

key bits) it is possible to identify the correct value of the key bits. 

The picture below contains a few differential traces demonstrating how input data bits correlate to 

power traces before (i.e. the first positive peak), and after mixing with the key (i.e. the second peak). 

The inversion of the second peak for bit 40 and 42 indicates that the corresponding key bits are set 

to 1. Key bits 41 and 43 must be 0 as the peak is not inverted. This attack is an instance of DPA. 

Figure 2 Example of multiple traces in DPA which reveal the key bits of an RSA secret key 

2.2 Fault injection 

With fault injection, the attacker’s objective is to change a critical value or to change the flow of a 

program. This then allows him to skip a digital signature verification, load unauthorised firmware or 

jump over the increase of a security counter. The “unlooper” device that is used in cases of Pay-TV 

piracy makes use of a fault injection technique (Figure 3). 
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Figure 3: An “unlooper” device makes use of fault injection (US$ 100) 

Faults can be injected in several ways: 

 Power glitches can disturb the power supply to the processor, resulting in wrong values read 

from memory. 

 Optical glitches with laser light can force any elementary circuit to switch, conceptually 

enabling the attacker to achieve a very specific change of data values or behaviour. 

 Clock manipulation by introducing a few very short clock cycles which may lead to the device 

misinterpreting a value read from memory. 

 Interruption by cutting the power to the processor while it is performing important 

computations, hoping to either prevent the system taking measures against a detected 

attack or get the system into a vulnerable state when the power is back. 

A slightly different technique which falls in the same attack family is Differential Fault Analysis (DFA). 

In DFA, the attacker reveals a cryptographic key by comparing the results of several runs of the 

cryptographic algorithm with injected faults and without injected faults.  

2.3 Used in combination 

Combinations of side channel analysis and fault injection attacks are possible and sometimes 

necessary to effectively exploit a vulnerability. For example, one may use time analysis to gain 

information about the time the processor takes to verify the digits of a PIN and interruption to 

prevent the processor from decreasing the “tries counter” in case of a wrong PIN. Sometimes it is 

possible to get the cryptographic key by passively listening in during a normal encryption in 

combination with listening in on an encryption where some random faults were injected during the 

crypto algorithm. 

2.4 In perspective 

Some side channel attacks are straightforward and cheap in equipment (< $2,000) to perform. 

Others are complex and require expensive equipment (> $50,000). This has an influence on the 

business case of the attacker; a device may need protection against the easy attacks, but may not 

require protection against the high-end attacks. It is outside the scope of this paper to discuss the 

differences between basic device protection and advanced device protection.  
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Further, although based on the security-by-obscurity principle, the complexity of many devices make 

an attack that is easy in concept still hard to execute, even when no side channel countermeasures 

are present. This aspect should also be taken into account when determining how much side channel 

protection a specific device requires.  

3 Patterns to defend against data leakage  

The patterns in this section assist to prevent application program code from leaking sensitive 

information when this information is processed. Application developers can use these patterns to 

protect confidential data like keys and passwords, but also to hide sensitive decisions. We silently 

assume that sufficient attention is given to protection measures against side channel analysis in the 

hardware and operating system. The seven patterns for leakage are shown in Figure 4. Using two 

examples, the arrows represent the following relationships:  

 The pattern BRANCH serves to prevent leakage. We refer to it as LEAKAGE.BRANCH.  

 The pattern KEY.INTEGRITY is a specific pattern that is derived from the broader KEY.ACCESS 

pattern. Both patterns serve to prevent leakage. 

 

Figure 4: Data leakage patterns 

 

3.1 LEAKAGE.KEY.ACCESS 

Context Keys consist of key material which, when handled by the application (e.g. 

reading / copying / verifying), is prone to leakage. 

Solution The application should at most access pointers to keys, but not their actual 

values. Handling of key values shall be done by dedicated crypto libraries 
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that have proven side channel resistance (also see 

LEAKAGE.CRYPTO.USER). 

3.2 LEAKAGE.KEY.INTEGRITY 

Context Application access to plaintext key values with the purpose of checking 

integrity (e.g. parity) of the key material for integrity purposes is prone to 

leakage. 

Solution Use time-constant verification methods and use unpredictable ordering in 

key byte tests. Further, avoid key integrity checking when not strictly 

needed. 

Negative example: The behaviour of the following code depends on the key value.  

public static boolean checkParity ( byte[]key, int offset) { 

     for (int i = 0; i < DES_KEY_LEN; i++) { // for all key bytes 

             byte keyByte = key[i + offset]; 

             int count = 0; 

             while (keyByte != 0) { // loop till no ‘1’ bits left 

                    if ((keyByte & 0x01) != 0) { 

                         count++; // increment for every ‘1’ bit 

                    } 

                    keyByte >>>= 1; // shift right 

             } 

             if ((count & 1) == 0) { // not odd 

                    return false; // parity not adjusted 

             } 

     } 

     return true; // all bytes were odd 

} 

The conditional statements are vulnerable to SPA and reveal the individual key bits. The picture 

below shows the power profile. One can see that the key bits are verified LSB to MSB and that testing 

bits set to 1 takes more time that testing bits set to 0.  

 

Figure 5: Power trace  of a vulnerable key parity check. Generated with Riscure’s side channel test 

platform called Inspector 

1 0 1 0 0 0 1     0 0 0 1      1 1  1 1 0  1 1  1     1 1 0 0 0 1

0x45             0x08               0xEF                    0x23
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Positive example: use a parity table that is consulted in an unpredictable order. 

static byte odd_parity[]= {  

    // each table entry represents odd parity of index 

    1,  1,  2,  2,  4,  4,  7,  7,  8,  8, 11, 11, .. 

    ..  // intermediate data removed 

    .., 248, 248, 251, 251, 253, 253, 254, 254}; 

 

public static boolean checkParity ( byte[]key, int offset) { 

    int r = random.nextInt() & 7; // random number 0..7 

    for ( int i=0, j = r; i<8; i++, j = (j+1)&7 ) {  

           // for all key bytes 

            if (key[j+offset] != odd_parity[key[j+offset]]) { 

                  return false; // parity incorrect 

            } 

    } 

    return true; // all bytes were odd 

} 

3.3 LEAKAGE.BRANCH 

Context Program branches (e.g. if statements or switches) may be prone to side 

channel leakage. 

Solution Avoid using branches for confidential decisions. Confidential program 

alternatives should be coded in a time-constant manner, preferably in 

identical instruction sequence. 

This pattern can for instance be applied when an application performs multiple access checks but, in 

case of failure, does not want to inform a user why access was denied. In that case the program flow 

should not leak the results of the individual checks. 

The example code below shows how one sensitive condition (i.e. the result of checkPin()) can be 

transformed into two conditions, each of which individually is non-sensitive. None of the branches 

directly relates to the checkPin result. 

Random.generateData( randomByte, (short)0, (short)1 ); 

boolean randomChoice = randomByte[0] < 0; 

byte mask = 0; 

if (randomChoice) // unpredictable 

 mask = 0x4; 

else 

 mask = 0x20; 

if (checkPin() == randomChoice)  

   // depends on checkPin and randomChoice 

 mask ^= (byte)0x4; 

else 

 mask ^= (byte)0x20; 
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When the result of checkPin() is true the variable mask is set to 0x00, otherwise it is set to 0x24. 

Following the checkPin step several other checks could be done similarly without SPA leakage. 

Eventually a branch is needed to compare this variable, yet to an attacker this branch is much harder 

to correlate to the individual checks performed. 

3.4 LEAKAGE.CRYPTO.USER 

Context 

 

The implementation of a cryptographic algorithm is sensitive to side 

channel leakage and complex to implement well.  

Solution 

 

 

Do not implement encryption at the application level, but only use the 

crypto library from a lower layer. This assumes that the crypto library is 

resistant against side channel analysis. Although this is often not (yet) the 

case, the developer of a crypto library should be better equipped to 

implement proper protection measures. 

3.5 LEAKAGE.ACCESS 

Context Accessing (i.e. reading or writing) confidential array values may expose 

confidential data through differential side channel analysis. 

Solution Accessing confidential array values shall not be done in a zero-offset 

sequential manner (e.g. from left to right). Instead, choose (dynamically) an 

offset and traverse the array starting at that offset modulo the length of the 

array. 

A negative example of this pattern is:  

memcpy( buffer, pin, 4 ); // copy a PIN code to a buffer 

 

The better way of doing this would be: 

for (int i = 0, j = (rand() & 3); i < 4; i++, j = ((j+1) & 3)) 

 buffer[j] = pin[j]; // start at a random index in the range 0..3 

3.6  LEAKAGE.VERIFY 

Context Verification of secrets like passwords and PIN codes shall not use a zero-

offset sequential comparison (e.g. from left to right) and fail with the 

detection of a wrong character or digit. The duration of the verification then 

reveals the index of the character. This applies for instance to verification of 

authentication data. 

Solution Do not use sequential methods like memcmp or strcmp to verify secret 

array values. Use a mechanism that compares the entire data before 

completion. Furthermore, consider to choose an unpredictable offset and 

traverse the array starting at that offset modulo the length of the array (see 

LEAKAGE.ACCESS). Even better, the comparison could be done with an 

encrypted secret instead of a plaintext secret. 

Negative example: the following code is sensitive to a timing attack as its duration reveals the index 

where the comparison fails, and sensitive to SPA as the power consumption is dependent on 

individual confidential array values. 
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if ( strcmp( givenPasswd, storedPasswd ) != 0 ) return -1; 

 

A better solution that would return only after comparing the complete password follows. 

char* c1 = givenPasswd; 

char* c2 = storedPasswd; 

char error = 0; 

for (; *c1 != 0 && *c2 != 0; c1++, c2++ ) // loop  

 error |= *c1 ^ *c2; // collect diff in error 

if (error | *c1 | *c2) // fail if any not zero 

 return -1; 

return 0; 

 

Note that this solution could be further improved with a randomised offset. 

3.7 LEAKAGE.CLEARING 

Context Clearing confidential array values shall not be done in a zero-offset 

sequential manner (e.g. from left to right) as clearing the data may expose 

the confidential data through differential side channel analysis. 

Solution Do not use sequential methods to erase confidential array values. This 

threat is commonly known for storing confidential data, and equally applies 

to clearing this data. An optimal approach would be to overwrite the array 

with random data first, and to clear it afterwards.  

4 Patterns to defend against fault injection 

The patterns in this section assist in preventing fault injection in application program code and in 

responding to it. These patterns protect critical data or program flow. The arrows between de 

patterns have the same meaning as the ones between the leakage patterns described in the previous 

chapter. 

 

Figure 6: Fault injection patterns 
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4.1 FAULT.CRYPTO 

Context Cryptographic algorithms are sensitive to fault injection. They may even 

reveal key data through the return of false encryptions due to fault 

injection. Differential fault analysis (DFA) is a good example of this. 

Solution Check for fault injection during or after crypto. Verify any ciphered data 

before transmission by deciphering or repeated enciphering. If the 

deciphered data matches the original data to be ciphered, or the repeated 

enciphering matches the original result, it is most likely that the 

encryption was not corrupted. 

Note that with RSA the public key operation is often much faster than the private key operation. In 

that case it is attractive to use a public key verification of a private key operation to avoid too much of 

performance loss. This countermeasure will decrease the performance though. 

4.2 FAULT.CONSTANT.CODING 

Context Sensitive data carrying a limited set of values (like phase and state 

variables) may be manipulated by fault injection attacks if they use trivial 

constant coding (e.g. 0, 1, 0xFF). 

Solution Do not use trivial constants for sensitive data. These constants should use 

non-trivial values that are unlikely to be set through fault injection. 

Hamming distance between two numbers is defined as the number of bits that differ for those 

numbers. For instance, the pair (0,1) has a hamming distance 1, while the pair (0xA5 and 0x5A) has a 

hamming distance 8. A fault attack would typically flip a bit, or set all bits of a number to either 0 or 1. 

Constants with the value 0 or 0xFF are therefore particularly sensitive to fault injection, as other 

values might be relatively easily converted to these trivial constants. 

Choosing the values at maximal hamming distance makes it difficult for an attacker to change one 

valid value to a different valid value. When multiple valid values exist it can be non-trivial to select 

optimal hamming distance between two numbers. Note that larger data types would allow for more 

hamming distance. 

The example below shows a list of constants with suitable values, with hamming distances of at least 

8. 

static final short STATE_INIT = (short)0x5A3C; 

static final short STATE_PERSO = (short)0xA5C3; 

static final short STATE_ISSUED = (short)0x3C5A; 

static final short STATE_LOCKED = (short)0xC3A5; 

Note that choosing the values at maximal hamming distance (number of bits that have different 

value) makes it difficult for an attacker to change one valid value to a different valid value. 

4.3 FAULT.DETECT 

Context Sensitive data may be manipulated by a fault injection attack at any time 

during program execution. 

Solution Verify sensitive data. Sensitive data can for instance be protected by a 

checksum. Data protected in this way should be verified at regular 

intervals. Ideally the integrity of sensitive data should be verified each 
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time when used. For convenience, data can be encapsulated in so-called 

security controlled objects that have their own methods to preserve 

integrity. 

The example below shows how a checksum can be used to protect data integrity. 

byte result = SOME_VALUE; 

byte resultChecksum = ~SOME_VALUE; // create checksum 

 

if ((result ^ resultChecksum) != 0xFF) fail(); // verify checksum 

 

4.4 FAULT.DEFAULTFAIL 

Context If a parameter can only take a limited number of values it is tempting to 

use the default case in a switch (or the else part of a cascaded if-else-if 

construct) for dealing with the last possible (and valid) value without 

checking. This is prone to fault injection because this alternative is easily 

selected as a result of potential data manipulation. 

Solution Do not make this assumption. When checking conditions (switch or if) 

check all possible cases and fail by default. Also a final else statement in 

an if-else construct should lead to a fail. 

The example below shows how this could be done in a switch tree. It is a good habit to initialize 

sensitive variables with the least-privileged, or even invalid, data. In this way an attacker who 

manages to skip later assignments cannot escalate privileges. 

switch (state) { 

   case STATE_INIT: processInit(); break; 

   case STATE_PERSO: processPerso(); break; 

   case STATE_ISSUED: processIssued(); break; 

   case STATE_LOCKED: processLocked(); break; 

   default: fail(); 

} 

4.5 FAULT.FLOW 

Context Fault injection can hit the program counter or stack. This can result in 

“code hijacking”, i.e. unauthorized jumps to privileged code. Verification 

of the correct flow should be done during the execution of sensitive code.   

Solution Use counters that keep track of the correctness of the execution path. 

Check counters to verify completion of execution path. 

A single counter monotonously incremented throughout the code can be efficient in detecting 

changes in the flow, but it allows for little flexibility to deal with multiple valid execution paths. A 

more sophisticated solution uses a counter to keep track of function calls and function steps. The 

example below demonstrates the use of such a counter. Each method includes an arbitrary number 

of steps where a virtual program counter is increased. Each method uses its own step value. By 

comparing the counter increase over a function call with the product of steps and step value it is 

possible to verify that the expected number of steps were taken, and that the right method was 

called. 
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#define METHOD1 = 13; 

#define METHOD2 = 17; 

int counter; 

 

void main( int argc, char** argv ) { 

 ...  

 counter = 0; 

 method1( ... ); 

 counter -= 2*METHOD1; // subtract 2 increase steps of method1 

 if (counter != 0) faultDetect(); // check completion of method1 

} 

 

void method1( ... ) {  

 int localCounter;  

 ...  

 counter += METHOD1; // increase counter 

 ...  

 localCounter = counter; // backup counter 

 method2( ... ); 

 counter -= 3*METHOD2; // subtract 3 increase steps of method2 

 if (counter != localCounter) faultDetect(); // check completion of method2 

 ...  

 counter += METHOD1; // increase counter 

 ...  

}  

 

void method2( ... ) {  

 ...  

 counter += METHOD2; // increase counter 

 ...  

 counter += METHOD2; // increase counter 

 ...  

 counter += METHOD2; // increase counter 

 ...  

} 

By using prime numbers as method identifiers (e.g. 13, 17) it is less likely that two different functions 

would result in the same counter increase. Code hijacking becomes very hard when nested code 

includes multiple compare statements as the attacker would need to glitch all checks for success.  

Note that this method works only for predictable flow, i.e. the caller of a method must know the 

number of steps taken inside the method. This means that code with loops and conditions which are 

not easily predicted outside the method should not include these counter increases. These 

constructs can be protected with other patterns. 

The readability of the code may be enhanced by combining counter related statements in macros. 
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4.6 FAULT.DOUBLECHECK 

Context Sensitive data may be manipulated by fault injection attacks. When a 

decision is made upon a single test the decision may be corrupted. 

Solution Double check sensitive conditions. A conditional process based on 

sensitive data should double check the data. Preferably these checks 

should not be identical, but complementary as the attacker will have to 

perform two different types of attack. 

The example shows how a double check can be implemented complementary. The example could be 

further improved by including some (unpredictable) distance between the two tests. 

if (conditionalValue == 0x3CA5965A) { // enter critical path 

    . . . 

    if (~conditionalValue != 0xC35A69A5) { 

        faultDetect(); // fail if complement not equal to 0xC35A69A5 

    } 

    . . . 

} 

 

4.7 FAULT.LOOPCHECK 

Context Repetitive processes running in a loop may be terminated early by a fault 

injection attack to bypass later checks, or get access to intermediate data. 

Solution Verify loop completion. 

Positive example: 

int i; 

for ( i = 0; i < n; i++ ) { // important loop that must be completed 

 . . . 

} 

if (i != n) { // loop not completed 

 faultDetect(); 

} 

4.8 FAULT.BRANCH 

Context Boolean values can be manipulated by fault injection attacks. 

Solution Do not use booleans for sensitive decisions. Fault injection typically 

changes actual values to simple values, like 0 or 1. Non-trivial numerical 

values are more difficult to set by fault injection. Sensitive choices should 

therefore not be coded as a boolean value, but rather as a non-trivial 

numerical value. 

Positive example: 

if (conditionalValue == 0x3CA5) { // then part 

 . . . 
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} 

else if (conditionalValue == 0xC35A) { // else part 

 . . . 

} else . . . 

4.9 FAULT.RESPOND 

Context Immunity to fault injection attacks is hard to achieve and a good response 

to an attack can further protect the device. 

Solution Monitor and respond to fault injection attacks. Monitoring can be done by 

repeatedly checking known data for changes (see FAULT.DETECT). The 

defence could consist of incident logging and temporarily or permanently 

disabling functionality. For instance, one can wipe the secret key upon 

detecting a fault attack.  

Before responding to detected faults it is recommended to monitor and log the frequency and 

amount of detected faults. Chips may malfunction not only because of fault injection, but also due to 

other reasons. A known phenomenon called cosmic rays occasionally causes natural faults in chips. 

These are omnipresent elementary particles that hit a transistor by chance once in a while. To avoid 

erroneous response to natural causes it is recommended to not respond to low numbers (<10) of 

detected faults. This threshold may need to be higher when a device is used in extreme 

environments, e.g. radioactive zones or outside the earth’s atmosphere. 

Although fault response may be done by disabling functionality this may not be desirable. There may 

be a requirement that a system is always reachable, or that dependent applications on the same 

system may not be affected. In that case resistance could be created by introducing long processing 

delays which will make attack repetition tedious. 

Note that it can help to track changes to known data, not just changes to sensitive data as is stated in 

the FAULT.DETECT pattern. This way, it is possible to detect and respond to an attack before 

unauthorized actions are performed by the attacker. 

The example below shows how functions faultDetect and faultResponse are used to detect and 

respond to faults. 

#define MAX_FAULTS = 10; 

int faultCounter = 0; // this variable must be stored in non-volatile memory 

 

void main( int argc, char** argv ) { 

 if (faultCounter >= MAX_FAULTS) { // check for fault excess 

     faultResponse(); 

 } 

 normalProcessing(); 

} 

 

void faultDetect() { // fault injection is detected 

 if (faultCounter < MAX_FAULTS) { 

         faultCounter++; 

 } else { 

         faultResponse(); // fault excess detected 

 } 
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 while (true); // eternal loop forces a reboot of the system 

} 

 

void faultResponse() { 

 wipeSecretsAndDeactivate(); // clear secrets, block access 

 while (true); 

} 

 

4.10 FAULT.DELAY 

Context Fault injection often requires an exact hit of vulnerable code or data. 

Solution Use random length delays around the use of sensitive code and data to 

reduce the risk of success. Time based fault injection can become 

impractical. 

Random delays reduce the risk of fault injection as the attacker can no longer predict instructions 

affected by a fault. It is important to note that the efficiency of the method depends on the entropy 

of the random number of repetitions, but lengthy delays also impact performance. If a relative low 

number of repetitions is combined with fault detection and response, as shown in the example 

below, it is possible to stop attacks before exhaustive attack repetition results leads to success. 

public static void trap () { // wait random time and catch faults 

    int loops = rand() & 0x3FF; // 10 bit entropy, 1024 possible values 

    for ( int i = 0, j = loops; i < loops; i++, j-- ) { 

        if (i + j != loops) { 

            faultDetect(); // register fault and respond on fault excess 

        } 

    } 

} 

 

4.11 FAULT.BYPASS 

Context Even though multiple checks may be done, a single fault may bypass them 

when fault detection is not done at the same level as the protected 

functionality. 

Solution Make sure that faults are detected in the same function that executes, or 

invokes, the protected functionality. 

Function weakProtection in the example below checks access conditions via a call to test1. Even 

though test1 is protected against fault injection, the overall protection is not good. An attacker who 

can skip the call to test1, or manipulate its return value, needs only a single fault to access the 

protected functionality. The other function, betterProtection, performs the double check in the same 

function that provides access to the protected functionality. 

void weakProtection() { // allow protected functionality after check 

 if (!test1()) return; // access to protected functionality denied 

 . . . // protected functionality 
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} 

 

boolean test1() { // test contains two sub tests with fault detection 

 boolean result1 = subtest1(); // first sub test 

 if (subtest1() != result1) faultDetect(); // double check subtest1 

 boolean result2 = subtest2(); // second sub test 

 if (subtest2() != result2) faultDetect(); // double check subtest2 

 return result1 && result2; 

} 

 

void betterProtection() { // allow protected code after double check  

 boolean result1 = test2();  

 boolean result2 = test2(); 

 if (result1 != result2) faultDetect(); // detect fault 

 if (!result1 || !result2) return; // access denied 

 . . . // protected functionality 

} 

 

boolean test2() { // test contains two sub tests without fault detection 

 boolean result1 = subtest1(); // first sub test 

 boolean result2 = subtest2(); // second sub test 

 return result1 && result2; 

} 

5 How to apply the patterns 

Before using the patterns a developer should assess the risk of side channel attacks to his device. 

Some of the main aspects to consider are: 

 Is there a business case for attacking the device? 

 Are side channel threats the low hanging fruit, or are other areas in the device weaker and more 

likely to get attacked first?  

 Can an attacker get physical access to the device and control or observe its relevant interfaces? 

When these questions are answered positively, the next step is to gain understanding on the 

resistance of the hardware and the operating system, including the cryptography that you are 

planning on using in your application. When these lower layers have strong countermeasures 

implemented, the application will benefit from this. When these lower layers do not have 

countermeasures implemented, you need to prioritise what patterns are best to apply. For instance, 

optimising a key-parity-check implementation in your application does not add much value if the 

underlying cryptographic algorithm already leaks the secret key. On the other hand, implementing 

the pattern for PIN code verification will still add value for many applications.  

Next, you identify the potential weaknesses in the application design. This involves finding critical 

decision points in the application and operations that access sensitive information. The patterns can 

assist in finding the weaknesses. Potential weaknesses for data leakage are the places in which a 

secret - and data that depends on a secret - is accessed, used or verified. Potential weaknesses for 

fault injection are all places where you make a security-critical decision such as access control 
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decisions and branches with if or switch statements, and where you manipulate sensitive data such 

as state and key-dependent data.  

The next step is to apply the patterns. In this activity, it is important to understand the compiler. 

Nowadays, compilers are intelligent and they can undo side channel countermeasures for 

performance reasons. For instance, if a compiler identifies a double verification of a variable, it is 

likely to reduce this to one at machine code level. By understanding how your compiler deals with the 

patterns, you can adapt the coding if necessary. It is only at this stage, that the application should be 

coded. In practice, you are likely to iterate back and forth the previous steps a few times, also 

depending on the software development approach that is followed.  

When selecting patterns a developer should consider patent issues. Some countermeasures may 

need licensing. 

The final step is to test the resistance of the device against the side channel attacks that it should 

protect against. Since the overall resistance of the device depends on so many aspects, including the 

physical features of the hardware, it is important that the final product is tested rather than 

evaluating only the design and source code. Dedicated side channel test tools can assist developers 

and security evaluators in this.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Device developer checklist for application development 

 

With respect to the effectiveness of these patterns the following considerations apply: 

 Be aware that side channel resistance needs to be addressed also at hardware and operating 

system level. Weaknesses at any level can result in exploitable vulnerabilities.  

 Most patterns proposed in this paper introduce penalties in performance, size and 

maintainability of code. Also note that efficient compilers may undo some of the code 

improvements suggested by the patterns. 

 Application of the patterns still requires a decent understanding of side channel issues, and can 

be rather error prone and laborious. For the far future, a tool for semi-automated inspection of 

source code and a compiler that adds side channel countermeasures to code rather than 

 Does the device need protection? 

 Understand the resistance of the hardware 

 Identify potential weakness in design 

 Select patterns to use 

 Understand your compiler 

 Code it 

 Test the resistance of the device 
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undoing these could be helpful. However, due to the complexity of the matter the development 

of these will take significant research effort. 

We inspected some open source software, such as the key-parity checking in GnuCrypto (see Error! 

eference source not found.) and OpenSSL, to see to what extent the code is sensitive to side channel 

threats and whether it could be improved with our patterns. In all open source software that we have 

come across in the past years, side channel protection is generally absent, and several 

implementations could benefit from the patterns in this paper.  

6 Conclusion 

Side channel attacks form a well-defined domain which is understood and addressed in the smart 

card context, but which has received limited attention outside of this domain. For device application 

developers, there is little guidance available on how to mitigate side channel risks. The patterns 

presented in this paper are based on a pragmatic approach and they can assist developers in 

implementing side channel protection on embedded devices.  
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