

Risk mitigation for sensitive applets

in a multi-application context
Marc Witteman, CTO Riscure Security Lab

witteman@riscure.com

Abstract: Modern Java Card platforms support co-existence of multiple applets

and post-issuance applet loading. Owners of sensitive applets seek assurance that

their assets are secure in the presence of other applets. We explain security

guidelines proposed by Global Platform and introduce a new Riscure product to

automatically verify basic applet security, and support additional in-depth analysis.

Introduction

Java Cards typically host multiple applets. These are provided in binary CAP files, containing library code or

applets. The CAP files may or may not be security sensitive. Typically owners of sensitive applications (e.g.

payment applets), would like assurance that other applications, referred to as basic applets, are not harmful.

While a full evaluation of all applets on a card would be technically possible, there are practical hurdles. This is

because the java card vendor, who seeks certification of the product for payment purposes, may not have

access to all code an issuer may wish to load. A reason for this could be because the issuer gets code

through alternative channels (application providers), or because the code is not yet available and might be

added later in the product life cycle (post-issuance). On top of that, application providers are not eager to

provide source code of their product in order to protect their IP.

An alternative approach would be to have a (partially) automated verification of binary code that may even be

done outside the certification process and would not necessarily require expert level security knowledge. This

could help payment schemes and other owners of sensitive applications to gain confidence that their assets

are secure. This document explains how Riscure can support this approach and help mitigate risk.

Threats and attacks

Although java card incorporates security by design, there are several threats that basic applets can pose to

sensitive applets:

1. Resource exhaustion, e.g.

o Unavailability of memory or CPU time

o Card blocked or terminated

2. Exposure of sensitive shared resources, e.g.

o PIN unblock, reset counter, change (may allow PIN brute forcing or DoS)

o Cryptographic implementation (may allow unlimited side channel profiling)

3. Virtual Machine Integrity breach (can compromise all assets), due to e.g.

o corrupt (incompatible or ill-formed) binary code

o fault injection

Part of these threats can be addressed in the regular certification process. E.g. the security lab could verify

that the product does not leak secret keys, even when exposed to a brute force attack. Also the security lab

could challenge the robustness of the virtual machine and measure its resistance against fault injection.

Resource exhaustion is bad, but should be detected during functional testing that both issuers and application

providers are expected to do. This threat should not be the primary concern for the owners of sensitive

applications.

It is much harder to prevent at issuance time that post-issuance basic applications will not expose the global

PIN code, or include corrupt code. These threats could be addressed with a new approach.

Requirements

Global Platform is a standards body well known for defining card management standards. Recently they

defined guidelines for the verification of Basic Applets. These are available as “GlobalPlatform Card

Composition Model Security Guidelines for Basic Applications v2.0”, on web page

http://www.globalplatform.org/specificationscard.asp.

The guidelines focus on the interaction between library packages and applet packages. The former package

exports methods (functions), which are used by the latter.

Figure 1: Interaction between applet and library packages

Figure 1 shows the interaction between these packages. The library package implements methods in its CAP

file, these are advertised in the corresponding EXP file. The applet package calls methods in the CAP file

conform their definition in the EXP file. Note that the CAP files are loaded on the card, while the EXP files are

kept off-card as a way to link applet packages to library packages.

As the library EXP file is the link between an applet and library package it is important that this EXP file is

compatible with both library and applet CAP files. This compatibity means that parameter and return types in

applet and library package match.

Library package CAP
file
 method_1(p1) {
 …
 }
 method_2(p2, p3) {
 …
 }

Library package
EXP file
 method1(p1);
 method2(p2, p3);

Applet package CAP
file
method_x(…) {
 method_1(p1);
 method_2(p2, p3);
}

http://www.globalplatform.org/specificationscard.asp

Incompatibilities between packages can breach security. It may provide a basic applet access to restricted

memory and compromize the security of all assets. More information on these attacks can be found in

https://www.riscure.com/archive/ISB0808MW.pdf and

http://wwwhome.ewi.utwente.nl/~mostowskiwi/papers/cardis2008.pdf.

The compatibility of packages can be verified automatically, which is mandated in the guidelines. Specifically,

the GP document includes four requirements:

1. Library compatibility

Libraries on the card shall be compatible with libraries assumed by the Basic Application;

2. Version update policy

Libraries changes shall always increase the minor version, and shall increase the major version if a

method signature changes;

3. Restricted access to sensitive shared resources

Basic Application shall not unblock, reset counter, or change the Global Platform CVM (PIN);

4. Verification

Basic application must pass latest byte code verifier.

Payment schemes support these guidelines, but may also desire additional effort by reviewing the code and

check for potentially dangerous behavior.

Verification environment

Riscure provides in version 2.8 of her JCworkBench tool a solution to verify basic applets. In this section we

detail how a verification session is prepared and started.

Configuration

JCworkBench is a software platform running on a PC that provides multiple tools to work with, and analyze the

security of, Java Card code. To analyze the security of a CAP file an analyst would start by copying a CAP file

along with all export files of the pre-existing code it depends on to the storage space accessible by the

computer that JCworkBench runs on.

For the verification it is important that the related export files are found, but even stronger that only the correct

export files are found. If several variants exist, it is essential that the export file corresponding to the actual

code loaded on the card is provided for the verification. Therefore the user will configure locations (folders)

where export files are to be found. At run time the verifier will look into those locations, the CAP file location,

and all nested folders.

Figure 2 shows how the export file locations are configured in the convertor options. This allows all tools

handling CAP files to find the right EXP files. In the example in the figure there are two folders indicated where

export files are located for respectively the Java Card system and the user libraries. Note that symbolic links

are used in the configuration dialogue to simplify referencing.

https://www.riscure.com/archive/ISB0808MW.pdf
http://wwwhome.ewi.utwente.nl/~mostowskiwi/papers/cardis2008.pdf

Figure 2: Selecting export files for verification

Invocation

JCworkBench includes a series of applet verification tests invoked by selecting BACH (Basic Applet Check

Help) under the Tools menu. BACH can run on an individual CAP file or on a set of CAP files. Individual CAP

files are verified easiest by selecting the CAP file window (after opening the file), and then invoking BACH.

This is shown in Figure 3.

Figure 3: Invoking BACH on a single CAP file

Alternatively, BACH can be invoked when no CAP window is selected. In that case a dialog opens that allows

for selecting an individual file, or a folder, that will be recursively scanned for CAP files to verify. This option is

useful when a large collection of files is to be verified.

Identification

After invocation BACH will first report general information about the session and the CAP file. This information

is helpful when sharing reports and understanding the context. It also facilitates reproducibility of test results.

The following information is provided about the session:

 BACH version and Global Platform guidelines version

 Verification date

 Export file folders

 Java Card Byte Code Verifier

The CAP file is identified with the following information:

 CAP file name and location

 AID and version number

 SHA-256 hash over the binary contents of the file

 Corresponding EXP file name and location

Figure 4 shows how this information is presented.

Figure 4: identification report

Global Platform guidelines verification

In this section we detail on the verification process and reporting for the four GP (Global Platform) guidelines.

This verification process does not require a high degree of security expertise, and is therefore optimized for

clear and concise reporting. Each guideline is indicated separately and concluded with an unambiguous

verdict.

Figure 5 shows the collapsed report including sections for each of the four global platform rules (referring to

sections 3.1.1, 3.1.2, 3.1.3, and 3.2.1 in the GP guidelines). In this example the session is successful and all

tests pass.

Figure 5: Collapsed BACH report

Library Compatibility

Applets may require code provided by libraries, these are CAP files that just include static methods that can

be used by any applet. It is important that applets are developed and verified against compatible library

versions, which are the same as those on the target smart card platform. In accordance with GP rule 3.1.1 it is

tested that each package imported by an applet package matches its expected version, or - as an allowed

deviation - has a minor version number that is higher than expected. In the latter case the actually imported

library is newer and may have additional functionality, but should not have changed the signatures or behavior

of the earlier version.

BACH will list for every imported file the expected version number, and then first search for an exact version

match, and if unsuccessful search for a newer version. Figure 6 shows an example where the best found

export file (lib23.exp) has a lower version (2.3) than expected (2.4). This violates rule 3.1.1, and results in a

verification failure. Note that the same problem is also detected by the Java Card Byte Code Verifier (rule

3.2.1).

Figure 6: Version check of imported packages

Version update policy

Libraries that are updated shall also change their version number. If a library changes the signature of a

method it should increase the major version number. To evaluate this rule the user shall have the export files

of earlier versions of a library available for comparison. Figure 7 shows an example where the evaluated

library version (2.2) is clearly not the first version, but an export file for a prior version is missing. In absence of

the prior version the verification fails as it cannot be confirmed that the version update conforms to the

guideline.

Figure 7: Library missing prior export file

Another example is given in Figure 8, where a newer library version has changed a method signature without

increasing the major version number. This is a risk as this an applet may abuse such library to mount a type

confusion attack leading to full asset compromise.

Figure 8: Functional library update fails to increase major version

Restricted access to sensitive shared resources

GP provides a library package including a CVM (Cardholder Verification Method) concept allowing applets to

share a PIN code. The CVM includes methods to change the value or status of the PIN code. Applets that

invoke these methods can expose the CVM and threaten other applets that rely on them. Figure 9 shows a

verification session that detects the use of these methods. Although there is a potential danger, this is not

necessarily a violation as the use of these methods might still be legitimate and secure if sufficient

authentication is applied. Therefore the test does not return a Fail, but an Inconclusive verdict. The user may

then decide whether additional analysis is needed.

Figure 9: Applet uses GP CVM methods

Byte Code Verification

In addition to the topics described in the sections above there are many more possible issues in CAP files.

These relate to the coding problems within the CAP file. The Java Card Byte Code Verifier (BCV) should

detect these problems. The best way to detect potential issues is to run the BCV. Figure 10 shows an example

where a corrupted CAP file is detected by the BCV. JCworkBench automatically links the verification process

with the external BCV tool, and copies the result in the test report. Bach also reports the version number of the

BCV allowing the user to verify that the newest BCV is used. Note that newer BCV versions can be obtained

through the Oracle web site:

http://www.oracle.com/technetwork/java/embedded/javacard/downloads/javacard-sdk-2043229.html

Figure 10: Byte Code Verification problem detected

Reverse engineering

While the BACH tool implements all the checks proposed by Global Platform, it is sometimes desirable to

perform additional analysis. For instance this may occur when usage of sensitive functionality is detected, or

when more in-depth analysis is expected in the context of certification.

JCworkBench supports listing of sensitive functionality usage and CAP file reverse engineering.

Sensitive functionality usage

The BACH tool inspects a CAP file for usage of the following functionality:

 Encryption and signing

 Random number generation

 Hashing

http://www.oracle.com/technetwork/java/embedded/javacard/downloads/javacard-sdk-2043229.html

 Transactions

 Firewall interaction between applets

 PIN

 Secret or private key types used.

This sensitive functionality is typically used in applets that may be vulnerable to, or involved in attacks. The

identification of sensitive functionality allows the user to decide on the need of further exploration. Figure 11

shows how BACH reports the usage of sensitive functionality.

Figure 11: Sensitive method analysis

Reverse Engineering

JCworkBench includes a tool called Cap2Jca to convert a binary CAP file into human readable assembly

code, the JCA file format. The JCA file format is an internal format used by the Java Card development kit

tools. It is loosely based on "Jasmin" (http://jasmin.sourceforge.com).

The JCA files generated by Cap2jca can be converted back into CAP files by using the JC development kit

tools. Cap2jca optionally and automatically applies symbol information such as field, method, class and

package names present in export files and CAP file debug components to improve readability in the generated

JCA.

Both Cap2jca and BACH functionality are built on the same Riscure developed library designed to interpret

and modify CAP files within JCworkBench. This unique feature is specifically developed by Riscure for this

purpose, and is not commonly available in Java Card development or test tools.

http://jasmin.sourceforge.com/

This reverse engineering step allows further inspection of the code. By invoking Cap2Jca under the tools

menu the conversion is started, as shown in Figure 12.

Figure 12: Invoking Cap2Jca

The resulting JCA file is shown in Figure 13. In this example additional inspection can be used to evaluate the

use of the GP PIN unblock mechanism. The JCA code includes a reference in comments to the exact method

name that is searched and detected. With a modest effort the user can verify here that the PIN unblock is only

invoked at installation time, and that a brute force attack is not possible.

Figure 13: Reverse engineering a regenerated JCA file

