
Practical optical fault injection on

secure microcontrollers

Jasper G. J. van Woudenberg, Marc F. Witteman,
Federico Menarini

Riscure BV, 2628XJ Delft, The Netherlands
{vanwoudenberg,witteman,menarini}@riscure.com

Abstract. In this paper we detail the latest
developments regarding optical fault injection
on secure microcontrollers. On these targets, a
combination of countermeasures makes fault in-
jection less than trivial. We develop fault injec-
tion methods to show experimentally that pro-
tected smart cards are still vulnerable. We per-
form power signal guided fault injection, using
a triggering mechanism based on real-time pat-
tern recognition. Furthermore, the use of jitter-
free diode lasers shows current countermeasures
may be inadequate for the near future.
Keywords — optical fault injection, differen-
tial fault analysis, pattern based trigger, coun-
termeasure, diode laser, secure microcontroller.

1 Introduction

Secure microcontrollers, such as smart cards, store
a wide variety of sensitive assets: this ranges from
PIN codes in banking cards, to subscriber identi-
ties in SIM cards, and to fingerprints in biometric
e-passports. These assets are highly valuable, and
therefore the main function of the secure microcon-
troller is to protect their integrity and confidential-
ity.

There are a number of ways attackers try to sub-
vert the protection mechanisms built into cards. At-
tacks can be categorized as active or passive. Ac-
tive attacks operate the card intentionally outside
of its normal operating conditions. Passive attacks
operate within normal specifications, but try to find
leakage of secret information. Further, attacks can
be non-invasive, semi-invasive or fully invasive. Non-
invasive attacks do not physically alter the card,
semi-invasive attacks may involve chip decapsula-
tion, and fully invasive attacks may entail delayer-
ing or probing the chip’s surface. Differential power
analysis [Koch99] is an example of a passive non-
invasive attack. Fault injection, the topic of this pa-
per, is an example of an active attack that can be
performed at all levels of invasiveness.

Fault injection (or perturbation) attacks involve
actively manipulating a chip in order to cause a
transient fault during the execution of some pro-
cess. The goal is to circumvent the protection of
its assets. A fault can for instance allow bypassing
security condition checks, such as PIN correctness.
Faults can also be used for Differential Fault Anal-
ysis. An extreme example of DFA is the RSA CRT
Bellcore attack [Bone01], which allows retrieval of
the full RSA private exponent from one faulty com-
putation. Other attacks allow retrieving keys of a
range of public and secret key algorithms, including
DES and AES [Biha97,Karp04].

Manufacturers of secure devices are aware of fault
injection threats and typically implement a range of
countermeasures to mitigate the risks. At the same
time adversaries improve attack methods to chal-
lenge these countermeasures, leading to an inter-
action that results in a continuous improvement of
card security.

In this article we mainly focus on optical fault in-

jection, a semi-invasive fault injection attack involv-
ing a high-intensity laser inducting faults. Since Sko-
robogatov’s et al.’s public introduction of this fault
injection method [Skor03], secure microcontrollers
contain increasingly strong countermeasures. At-
tacks such as [Skor10] aim at specific targets, in this
case memory write and erase operations. The aim of
this paper is to more generally describe the tools and
methods required to analyze state-of-the-art secure
microcontrollers using optical fault injection. Note
that most of the concepts applied to optical fault
injection extend to other types of glitching.

The remainder of this paper is organized as fol-
lows. In the next section we give some background
on fault injection. After this we continue to de-
scribe common countermeasures found in modern
secure microcontrollers. Then we describe the fault
injection hardware needed to theoretically overcome
these countermeasures, and give several experimen-
tal results. We conclude with some final remarks.

2 Background

There are several methods for inducing a fault in
a computation. On the non-invasive side, we can
perform clock or voltage glitching [Chou06]. Smart
cards have external power and clock supplies. Both
of these contacts can be operated outside of their
specified ranges, possibly causing faults in the pro-



cess running on the card. The cost of the tools is
low, although this also holds for the success rate on
modern secure microcontrollers.

On the fully invasive side, there is active fault
injection by microprobing. For this a card needs to
be prepared: the chip needs to be decapped, the
passivation layer removed, and the shielding needs
to be circumvented. Although not impossible, this
is a very laborious process [Tarn10]. Due to the cost
of this method and the tools required, we do not
consider this to be a very practical attack path.

Optical fault injection, however, requires only
minimal chip preparation: access needs to be ob-
tained to either the front or the back side of the chip.
This can be accomplished by decapping or smart
card contact pad removal. On recent secure micro-
controllers the cost is increasing due to the higher
demands on accuracy; however, in terms of time and
monetary cost it is still quite feasible for a reason-
ably equipped adversary.

The remainder of this section will detail several
ways of injecting faults and how to use any success-
ful attempts.

2.1 Voltage and clock glitching

With clock glitching, the device clock is temporar-
ily accelerated by introducing one or several short
pulses in the external clock provided to the smart
card. This has the effect of possibly introducing a
fault in the execution of an instruction; when e.g.
a CPU is reading a memory cell at the time of a
glitch, the results may be read before the data is
stable on the memory bus. This results in reading a
wrong value. Similarly, a voltage glitch may result
in wrong values being read from memory at the time
of the glitch.

Another effect that can occur is that an instruc-
tion is fetched from memory, but its execution is
never completed: the fast clock has caused the next
instruction to already be fetched.

We find most modern secure microcontrollers
have adequate protection against these types of at-
tacks. The ranges these controllers are expected to
operate within are well defined [iso06], and can be
verified by the chip. Secure microcontrollers also run
most of their operations based on an internally gen-
erated clock, and therefore they are not as sensitive
to outside clock glitches as microcontrollers running
on an externally generated clock.

The countermeasures focus on both the preven-
tion of glitches by filtering the input, and on de-
tection by continuously monitoring these interfaces.
If out-of-specification input is detect, the card may
respond to this event as described in section 3.

2.2 Optical fault injection

Optical glitches are generated with a strong light
source, e.g. a photo flash or a laser beam. As semi-
conductors are inherently sensitive to light it is pos-
sible to switch transistors when exposed to an op-
tical pulse. When using a precision stage and a fo-
cused laser beam, it is possible to accurately tar-
get certain regions of a chip. Although this creates
an extra two dimensions of parameter value search
space (X and Y coordinates), it allows on very
specific focusing on e.g. memory decoders, CPU
or cryptographic components. Also photosensitive
countermeasures can be avoided. Furthermore, spot
size and photon wave length are other relevant pa-
rameters.

In terms of preparation the chip die needs to be
optically exposed. The front side is the side of the
metal layers and transistors, which are covered in
an epoxy. This side typically requires removing this
epoxy (decapping), although for some chips even
this is not necessary as they have transparent epoxy
covering them. The back side of the chip is the side
of the substrate, which typically requires removing
the center part of the smart card contact pads in
order to be exposed. Sometimes depackaging and
rebonding is necessary before it can be accessed.

Because of its minimal preparation required, op-
tical fault injection is considered semi-invasive. De-
spite of this drawback the method is the most suc-
cessful smart card perturbation attack as coun-
termeasures against it are not easily implemented
[Skor03].

2.3 Exploitation

Fault injection is employed to achieve various ef-
fects. In this section we highlight a few of them: ac-
cess bypass, memory dumping, (partial) key nulling,
differential fault analysis, and influencing (side
channel analysis) countermeasures.

Access bypass is achieved when the attacker
glitches a sensitive decision (e.g. an authentica-
tion result), resulting in more privileges. With these



privileges the attacker may access sensitive data. An
example would be glitching a PIN verification, after
which a banking card will sign transaction requests.

To obtain a memory dump the attacker glitches
the device while it is transmitting data. Due to the
glitch, data is transmitted from the wrong memory
location, or excessive data is dumped. In both cases
confidential data may be leaked. Older smart cards
were sometimes vulnerable to this attack during
transmission of their ATR, in extreme cases lead-
ing to full memory dumps.

Partial key nulling is an attack whereby an at-
tacker sets a fraction of a secret key to all 0 bits
(or all 1), and does not affect a few bytes of the
key. With knowledge of the rest of the key, those
remaining few bytes can be bruteforced if the input
and output data is known. Full key nulling can be
interesting in attacks on secret key protocols: if a se-
cret key is used for e.g. authentication, forcing a key
to a known value allows an authentication protocol
to succeed without knowledge of the actual secret
key.

Differential Fault Analysis (DFA) can be per-
formed after glitching a cryptographic operation,
resulting in corrupted signatures or cryptograms.
With mathematical analysis these corrupted data
can be used to extract a secret or private key. An
example of a single fault DFA is the RSA/CRT Bell-
core attack [Bone01], which allows retrieval of the
full RSA private exponent from one faulty computa-
tion. Other attacks allow retrieving keys of a range
of public and secret key algorithms, including DES
and AES [Biha97,Karp04].

Finally, it may be possible to enhance side channel
analysis or fault injection by disabling or influenc-
ing countermeasures. As some countermeasures are
configurable, they are switched on at some point
during bootup. By glitching it may be possible to
skip switching these on, or e.g. disturbe the balance
of random number generators.

3 Countermeasures

As the attacks evolve, so do their countermeasures.
Chip manufacturers and card vendors are aware of
the threats posed by fault injection. Both therefore
implement a combination of countermeasures, as the
most secure cards includes a mix of hardware and
software features [Komm99,Witt08].

Of course, every countermeasure comes at a price.
The main trade-offs lie in manufacturing cost versus
hardware countermeasures, card performance ver-
sus software countermeasures, and countermeasure
sensitiveness versus card failure rate. It is common
knowledge perfect security does not exist. However,
even the best practically attainable security is not
reached in order to have a card that is cost-effective,
performs well, and does not fail constantly. The
countermeasures described in this section therefore
have the goal of making attacks sufficiently expen-
sive, not impossible.

3.1 Hardware barriers

Chip manufacturers use physical barriers, like
shields to protect the chip from malicious manip-
ulation. Shields can be passive or active. A passive
shield is a metal layer covering large parts of the chip
surface to prevent physical access with probes or
optical beams. Passive shields may not completely
cover the chip. They often consist of a matrix of
smaller shields placed at a small distance, as this
makes the chip less sensitive to breaking due to tem-
perature fluctuations. Passive shields can typically
be removed without the chip detecting this.

An active shield consists of a wire mesh that runs
life signals over the chip surface and detects any in-
terruption of the wire. Active shields offer a better
protection against modification, but are more trans-
parent to light. These shields are intended to de-
tect physical tampering, but as shown in [Tarn10],
a well-funded and highly determined attacker can
reroute wires around a hole that he has made in the
shield.

3.2 Hardware sensors

Modern smart card chips include a wide array of
sensors to detect anomalies, including voltage, clock,
photon and temperature sensors. With these sen-
sors configured correctly it should no longer be pos-
sible to use e.g. voltage spikes to introduce faults.
However, strict sensor settings may impact opera-
tion reliability: a cell phone with almost flat bat-
tery for instance may not be able to keep the SIM
card energy resource within the standardized range.
Therefore manufacturers or card vendor may choose
rather permissive sensor settings that leave a vulner-
ability to glitching.



Optical sensors attempt to detect physical open-
ing of the device, and catch scanning laser beams
[Dero07]. Although these sensors can be effective
against laser scanning, it is impossible to protect
each transistor. An attacker who has found the right
position to hit with a laser succeeds if he manages to
make the optical spot size on the chip small enough
to miss the nearest sensor.

3.3 Other hardware features

Smart card chip features like internal and drifting
clocks are not primarily designed as fault injection
countermeasures, but do make perturbation more
difficult: the clock cannot easily be manipulated and
the exact timing of the instruction to hit is difficult
to predict due to the clock instability. Also inter-
nal clocks tend to run much faster (>30 MHz) than
external clocks (~4MHz). Consequently, successful
glitches should become much shorter to avoid hit-
ting multiple instructions and getting unpredictable
or useless results.

3.4 Software countermeasures

Perturbation aware software aims at both decreas-
ing the probability of a fault injection and detecting
the fault by verification of computed intermediate
results.

Decreasing the fault probability is typically
achieved through random delays and process or-
dering. Without some form of synchronization, an
attacker may need many repetitions of his experi-
ments before he hits the right instruction. However,
the insertion of random delays leads to a significant
execution slowdown.

Verification involves checking the validity of a de-
cision, address or data, and attempts to prevent
abuse of a successful fault. The software may double
check all security sensitive decisions and create ver-
ification checksums for all sensitive data. Also the
program flow must be protected to avoid ‘code hi-
jacking’ when the program counter is glitched dur-
ing branch or return instructions. Finally, crypto-
graphic signatures will always be verified before
transmission to avoid differential fault analysis. Ver-
ification is expensive since checking the effect of one
instruction costs multiple instructions.

Whenever verification fails, or a hardware coun-
termeasure is triggered, a software response can be

evoked. A device can move to a locked state, over-
write its secret data or even terminate. This obvi-
ously needs to be tuned not to have devices fail as a
result of alleged perturbations that could be caused
by non-hostile phenomena.

4 Optical fault injection on modern

secure microcontrollers

Given the range of countermeasures implemented,
the bar for modern secure microcontrollers is rela-
tively high compared to non-secure microcontrollers
or older technology. It is necessary to be able to very
precisely focus on a certain area of a chip in or-
der to focus on a particular sensitive area, avoiding
any sensors or triggering unwanted faults. Further-
more, the laser should only be switched on during
the execution of a specific instruction or instruc-
tions, sometimes only during a part of a clock cycle.
Due to verification countermeasures, it is also of im-
portance to be able to inject multiple faults during
a computation.

Under these conditions, optical fault injection on
these targets will be increasingly unsuccessful with
tools from the earlier days, like simple flash lights
and laser pens [Skor03], or even laser cutters. The
two former have neither position nor time accuracy,
and the latter lacks in time accuracy.

In this section we discuss the fault injection setup
we designed to overcome these shortcomings and ad-
here to the specifications needed for optical fault
injection on modern secure microcontrollers.

4.1 Triggering

As we intend to trigger the laser on one or multiple
instructions, we need to have a trigger that synchro-
nizes to these instructions. Traditionally, time based
triggers have been used. They use a hardware-based
timer that triggers a fault at a programmable delay
after a communication event. Due to drifting clocks
and variable delay countermeasures the probability
of hitting a selected target instruction decreases.
This can be acceptable in situations where injec-
tion attempts can be repeated indefinitely without
penalty or situations where many target instructions
would be suitable fault candidates. The latter can
be true for Differential Fault Analysis (especially
for DFA on RSA in CRT mode). However, if the de-
vice implements consistent software verification it



is no longer practical to inject faults using a time
based trigger, as the jitter between the communi-
cation event and the target instruction is relatively
large.

Pattern based triggering is an alternative to time-
based triggering. With this technique a signal is ob-
served and a real-time trigger is produced when the
analog signal corresponds to a preprogrammed ref-
erence signal. We implemented pattern based trig-
gering using an FPGA board with fast A/D sam-
pling. The FPGA code performs continuous com-
parison of an incoming signal with the reference
signal, and produces a trigger when the Sum of
Absolute Differences drops below a programmable
threshold.

Although the FPGA board can sample at 100
MHz, and performs array comparison on a 10 ns
time base, this may not be sufficient for noisy and
signals with high frequency patterns. Therefore we
included a frequency conversion filter using a nar-
row band filter. The narrow band filter is based on a
common architecture used for demodulation in AM
radio receivers, where a carrier wave is removed from
a modulated signal and an envelope signal remains.
This envelope signal is of a much lower frequency,
but represents patterns occurring at a higher fre-
quency. With this filter it is possible to sample, com-
pare and trigger on signal features up to 400 MHz.

For fault injection, we use this device to synchro-
nize to the power signal coming from a chip. As
this signal typically shows enough variation to iden-
tify different process steps, it is possible to find a
unique pattern just before the fault injection target
instruction. After loading this reference pattern, we
can perform a time-based trigger relative to the pat-
tern based trigger in order to achieve a precise fault
injection. The effective jitter relative to the target
instruction now only depends on the timing varia-
tion introduced by the card in the short period be-
tween the instruction and the reference area, and on
the jitter in the pattern based trigger (max 10ns).

4.2 Optical setup

Besides an accurate trigger, we also need a low-
jitter laser to respond to this trigger. Furthermore,
it needs to have a spot size that allows triggering
only small areas of the chip. We chose to use diode
lasers as they provide very accurate timing with sub-
nanosecond scale jitter. Diode lasers can switch very

quickly (up to 25 MHz repetition rate), which offers
the possibility of multiglitching. This means that
consecutive instructions can be manipulated, and
verification countermeasures may be defeated. The
diode laser is mounted in a microscope setup, with a
camera for visual positioning, an XY stage for mov-
ing the target, and 5×, 20×, and 50× objectives for
generating different spot sizes.

Although the power of diode lasers used to be
too low for shield or substrate penetration, de-
velopments have resulted in powerful devices. The
newest generation of diode lasers (multi-mode) is
sufficiently powerful (> 10 Watts). Since these diode
lasers produce a non-circular and divergent light
source, extra lenses are needed to correct the shape
and divergence and shrink the size of the light spot
on the die. A further reduction is achieved with ob-
jectives that reduce the spot size to a minimum of
a few µm. This is limited by the physics of light:
a spot can never have smaller dimensions than the
wavelength of its photons (for common lasers in the
range 500-1000nm). With feature sizes moving be-
low 100nm, even with the smallest possible spot size
we will be hitting multiple transistors. From prac-
tice, we observe this size is small enough to stay
away from sensors when targeting specific groups of
transistors on a chip.

When attacking a chip, the attacker can choose
to target the front side or back side of the chip (see
Figure 1). The transistors are positioned at the front
side, but they may be difficult to reach due to metal
shields (although gaps in the shield may allow some
light to pass). The back side of the chip is formed by
the substrate, a slice of silicon that acts as a frame
for the chip. This substrate needs to be penetrated
before the transistors are reached.

A back side attack is preferably performed
with light wavelength for which silicon is semi-
transparent, i.e. longer than about 1000 nm. Front
side attacks can be performed with many wave-
lengths, but shorter wavelength light is more suit-
able than infrared as transistors switch easier due to
the higher energy content. Together with the limited
choice between different wavelength for diodes, we
use 808nm for front side attacks and 1064nm for
back side attacks.



Fig. 1. Front and back side attacks

4.3 Parameter determination

In order to perform a successful laser fault injection
attack, several parameters need to be found. Such
parameters include the location on the chip, the
time delay between a synchronization point and the
target instruction, the duration of the laser pulse,
the intensity of the laser, the spot size, the num-
ber of pulses, and their mutual distance. Full ex-
ploration of the whole space is an exponential prob-
lem and therefore is for even small parameter ranges
practically infeasible.

A practical approach lies in taking a divide-and-
conquer approach by tuning parameters individu-
ally, rather than as a complete set. Several exper-
iments and other sources of information can help
individual tuning:

– The timing and synchronization points for each
target instruction can be derived by taking a
power trace of the execution. Especially having
programmable cards where one can compare a
power trace with the target operation, and one
without, can help in pinpointing the exact tim-
ing.

– By attempting injections and observing the ef-
fect on the process by analyzing the power use
and card output, it is often possible to establish
the effect of a single fault. Once the timing for
the first fault is found, the search for the proper
offsets of subsequent faults can continue.

– The location of the laser pulse on the chip can
be derived by visual narrowing down: if the tar-
get is a hardware DES, there is likely no point
in targeting the center of the ROM area. This
should be used with caution; we have experi-
enced finding unexpected target areas that have

yielded successful injections (e.g. attacking the
DES execution by targeting the key loading from
EEPROM). After roughly locating the area, it is
possible to attempt an injection at each location
within this area.

– The intensity of the laser is determined by
attempting to inject fault at increasing laser
power. Note that different areas may have dif-
ferent sensitivities.

– The spot size is determined by the choice of ob-
jective, and with the 50× objective is 6×1.4µm.
The effective spot size is actually larger than the
projected laser beam due to scattering of the
photons between metal layers and through the
substrate. We typically start with the 5× objec-
tive, and only go to smaller sizes if necessary as
a smaller spot implies more precise scanning to
find a sensitive spot.
There is some remaining risk here that sensors
may be activated. This can be mitigated by
smaller spot sizes, or by reacting to ‘tripping’
a sensor, as is explained in section 5.2.

– The duration of one laser pulse is typically re-
lated to the clock frequency of the attacked chip.
We may start with longer pulses to observe any
deviating response, and narrow down the du-
ration to smaller pulses to achieve specific re-
sponses.

Obviously, the injection of a fault is only possible
when all parameters have been found correctly. As
every target is different, the points above do not
guarantee success. They are typically applied itera-
tively, narrowing down on the right ranges by look-
ing at the feedback from the power measurements
and card responses. Currently, it is an open research
question on how to optimize this process.

5 Experiments

Using the system described in the previous sections,
we perform several experiments to verify whether
the described countermeasures can be dealt with.

5.1 Card 1

This card is a programmable card without OS.
Due to its lack of any hardware countermeasures,
it is a good card to perform baseline experiments



against. We use this card to verify a few capabili-
ties: timing stability of the laser and trigger gener-
ator, multiglitching capabilities and the possibility
of performing a back side attack.

We program it with an application that performs
a PIN verification twice: only if both verifications
succeed, access is granted. For testing purposes we
have the application return which verification has
succeeded in its response code, allowing us to dis-
cern the effects of each of our laser pulses.

We remove the center part of the smart card con-
tact pads to expose the substrate of the chip. Then,
the smart card is inserted into a reader with pro-
grammable hardware timers and fast pulse genera-
tors, which will be used to pulse the laser at fixed in-
tervals after the card starts processing. For the back
side of the chip we use a 1064nm laser with a pulse
rate of 25MHz. The laser is capable of 20W, but we
operate it at 50% power. By using the 5× objective
we get a spot size of approximately 60 × 14µm, but
due to the high intensity laser the effective spot size
will be larger due to photon scattering on the chip.
The card is running at 1MHz, and from previous
experiments we know the card can handle pulses of
the duration of its clock cycle with this intensity.

As this card has a single CPU, we know the PIN
verification is happening at approximately the same
location as e.g. the code sending its ATR. The ATR
is the first response a card gives on the I/O line
after power up. We perform a fault injection on each
location in a 20 × 20 grid over the full chip and find
several locations where the card is not responding
with a full ATR, or with a corrupted ATR. This
gives us candidate locations at which the CPU is
sensitive, and where we may find the right timing
for injecting faults in the PIN verification.

We first take a power trace and compare it with
the source code to determine the a range of about
100 clock cycles (100µs) starting at time t = 600µs
in which the first PIN verification should happen.
For each injection attempt we present the card with
a faulty PIN code. For several candidate locations
we pulse the laser at t + k, k ∈ {0, 1, . . . , 99}, and
observe the response code of the application. For
a particular location, we see at k = 72µs that the
application responds the first PIN verification has
succeeded, but the second one has failed. Note this
can also be observed in the power trace by a slightly
longer processing time.

Fixing this location and first target timing, we
proceed in finding the timing of the second target.
We pulse the laser for a second time at t + k + i for
i = 1, 2, . . . until we find that at i = 33 the card
responds a successful PIN verification.

Next, we fix all parameters to determine the jit-
ter of the system as a whole. As the card has a
stable clock and no countermeasures, the fault in-
jection probability depends only on the setup. For
1000 consecutive injections we find the card always
returns the PIN has successfully been verified. When
k or i is changed by 1µs, the card no longer reports a
successful verification. Also, exchanging the 1064nm
laser for a 14W 808nm laser shows no more success-
ful faults.

This experiments shows that in order to attack
even this unprotected card, a time resolution of 1µs
is necessary for each pulse, which is met by the diode
lasers and the trigger device. Furthermore it shows
that 1064nm is a necessity for back side attacks, as
even at higher power 808nm does not sufficiently
penetrate the substrate.

5.2 Card 2

This card is programmable, is OS-based and runs off
an unstable internal clock, and has detection of op-
tical faults. It has transparent epoxy and no shields
covering the front side. We use this card for test-
ing front side attacks, and for testing pattern based
triggering. Also, we will be targeting a hardware
DES accelerator running with an unstable clock of
around 30MHz.

Card preparation is trivial: a small hole in the
plastic covering the chip is required. The laser is
able to penetrate the transparent epoxy. We load
an applet performing a DES encryption on the hard-
ware accelerator with a configurable key, and with
the supplied input data. The applet returns the en-
crypted output.

The DES execution can be observed in the power
trace. However, the timing is inconsistent due to the
unstable internal clock. We therefore find a synchro-
nization pattern before the DES execution, and use
this as a pattern to trigger the power measurement.
Now, the DES execution can be seen in Figure 2
between 90µs and 120µs. The trigger pattern is re-
peated before and after the DES at a relatively con-
sistent interval.



Fig. 2. DES execution and pattern based trigger

Interestingly, we can use this pattern also for a
second function: determining correct execution of
the card. In earlier experiments we have captured
power traces of a card responding to optical faults
by terminating itself. In these power traces the syn-
chronization patterns are not present after the DES
execution. Hence we can use these patterns to de-
tect, real-time, whether a card is proceeding with
normal operation. We program our card reader to
switch off power to the card if the second set of pat-
terns does not show up within 100µs of the laser
pulse.

With this safeguard set up, we start scanning
the chip for a good time/location combination. We
find various locations and timings where the card
resets or attempts to self-terminate. Within 10000
attempts we find a combination in which the card
continues executing properly, but always returns a
cipher text that is equal to the plain text. This does
not allow obtaining the secret key, but defeats pro-
tocols that rely on a user knowing the encrypted
result only when in possession of a shared secret
key.

We redo the experiments with the ‘correct ex-
ecution’ detection switched off. Cards now typ-
ically stop responding within 1000 injection at-
tempts. With the detection switched on, we have
had one card failure in 60000 injection attempts.
When switching off the laser pulse synchronization
we get very inconsistent results, as the laser is most
of the time not targeting the DES.

These experiments show that on more advanced
cards, it is of importance to somehow prevent card
termination and to synchronize the pulse with re-
spect to the jitter in the process. In this case this
is possible with one pattern, however typically two
different patterns are required. This experiment also

shows that even without decapping the chip it may
be possible to inject faults if the epoxy is transpar-
ent.

5.3 Other experimental results

The two cards experimented with before are good
for experimentation as they do not sport the full
range of modern countermeasures and allow testing
aspects of the system in isolation. In this section
we would like to share some experimental results on
card employing the latest technology.

Backside navigation Navigation for back side at-
tacks is more troublesome than the front side, since
no clear image of the chip can be obtained using vis-
ible light. Interestingly, a laser pulse usually creates
a spike or a dip in the power trace. We scan the sur-
face of the chip, compute an average of the samples
that show a glitch effect and put them in a color-
based 2D plot, where color coding represents the
glitch effect on the power consumption. The pres-
ence of different logic and materials in the optical
beam path leads to power consumption fluctuations
which reveal part of the physical chip layout. Sev-
eral areas of the chip now can be identified, even
though we have no direct access to the front side, as
can be seen in 3.

Disabling internal clock Since an internal clock
breaks the synchronization with the perturbation
environment it is interesting to find a way to disable
this clock. As a test case we used a chip that runs
on the external clock during start-up, and switches
to the internal clock immediately after power up.
By experimental insertion of glitches shortly after



Fig. 3. Backside laser pulse power spike imaging

power up we found the timing offset where the inter-
nal clock was activated. To verify whether the switch
has been prevented, the frequency spectrum of the
power consumption signal can be checked. With a
well-chosen glitch we skipped this instruction and
prevented switch over to the internal clock. After
that we could benefit from the more deterministic
chip behavior to identify and exploit other glitching
opportunities.

Double verifications We are encountering more
cards that, considering the state of the art in dou-
ble fault injection, verify sensitive operations twice.
This implies that three successful injections are nec-
essary: one for the sensitive operation, and two for
the verification steps. Under laboratory conditions
we have been able to inject a fault in an RSA CRT
execution on the latest smart card chip technology.
Each verification steps afterwards could be attacked
with about 10% success rate using pattern based
triggering, resulting in an overall 1% success rate.
This means that the expected number of injections
needed to retrieve the full private RSA exponent is
about 100.

6 Conclusion

In this paper we have detailed the latest develop-
ments regarding optical fault injection on secure
microcontrollers. A combination of countermeasures

makes fault injection less than trivial; however, due
to practical security trade-offs made by chip manu-
facturers and card vendors, optical fault injection is
still a possible and affordable method. We developed
fault injection methods to challenge the security of
the latest smart cards and show experimentally that
protected smart cards are still vulnerable to fault in-
jection. Especially the use of an accurate triggering
mechanism based on real-time pattern recognition
and the use of jitter-free diode lasers shows current
countermeasures may be inadequate for the future.

To attain a higher security level it is important
for chip manufacturers to decrease the sensitivity
of the hardware to optical perturbation, and for
software developers to consistently apply a mix of
countermeasures. During development it should be
presumed single or double glitches will be success-
ful, and therefore we advice using more than two
verification steps. As fault injection is a stochastic
process, the success rate will drop significantly with
each added verification.

Pattern based triggering can be complicated by
maximizing the variability of the internal clock fre-
quency and instruction sequence ordering. With the
newest fault injection methods we can tune fault in-
jection more carefully, but we cannot fully control
the effect of perturbation.

The latest technology may also require injecting
faults at two different locations on the chip; e.g. a
fault in the cryptographic accelerator and one in the
CPU. We expect attacker technology to also move
in the direction of two lasers at two locations, even
though this will create additional challenges regard-
ing positioning and finding correct parameter loca-
tions.

References

Koch99. Paul Kocher, Joshua Jaffe and Benjamin Jun,
“Differential Power Analysis”, Lecture Notes in
Computer Science, Vol. 1666, pp. 388–397, 1999.

Bone01. D. Boneh, R. A. DeMillo, R. Lipton, “On the

Importance of Eliminating Errors in Crypto-

graphic Computations”, Journal of Cryptology
14(2):101–120, 2001.

Biha97. Eli Biham, Adi Shamir, “Differential cryptanal-

ysis of the data encryption standard”, Advances
in Cryptology – CRYPTO ’97: 17th Annual In-
ternational Cryptology Conference, LNCS, pp.
513-525, vol. 1294, 1997.

Karp04. Mark Karpovsky, Konrad J. Kulikowski, Er
Taubin, “Differential Fault Analysis Attack Re-

sistant Architectures for the Advanced En-



cryption Standard”, Proc. World Computing
Congress, Cardis, pp. 177–192, 2004.

Skor03. S. Skorobogatov and R. Anderson, “Optical Fault

Induction Attacks”, CHES 2002, LNCS 2523, pp.
2–12, 2003.

Skor10. S. Skorobogatov, “Optical Fault Masking At-

tacks”, FDTC 2010.
Chou06. Hamid Choukri, Michael Tunstall, “Handbook of

information security, Volume 3”, Hossein Bidgoli
(ed.), pp 230–231, John Wiley and Sons, 2006.

Tarn10. C. Tarnovsky, “Hacking the smartcard chip”,
Blackhat DC 2010.

iso06. “Identification cards – Integrated circuit cards –

Part 3: Cards with contacts – Electrical inter-

face and transmission protocols”, ISO/IEC 7816-
3:2006.

Komm99. O. Kommerling, M Kuhn, “Design Principles

for Tamper-Resistant Smartcard Processors”,
USENIX Workshop on Smartcard Technology,
Chicago, Illinois, USA, May 10–-11, 1999.

Witt08. M. Witteman., M. Oostdijk, “Secure Application

Programming in the Presence of Side Channel

Attacks”, in RSA conference 2008.
Dero07. O. Derouet, “Secure Smartcard Design against

Laser Fault Injection”, FTDC 2007.


	Practical optical fault injection on secure microcontrollers

