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1 Introduction 

The use of secret codes and ciphers for protecting information dates back to almost 4.000 years ago. 

Messages were encoded in different means for allowing two parties to communicate, without making the 

message content available to others. 

1.1 Threat models 

Typical threat modeling applied in cryptography involves a malicious third party attempting to access either the 

keys used for protecting the content or the protected content itself. In this model, which we refer as the “Black-

Box” model, the attacker is assumed to be able to observe and alter the ciphertext, without having access to 

the systems performing cryptographic operations. 

 

Figure 1.1  - Black-Box threat model 
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In some cases the threat model is augmented with the attacker’s ability to interact with the systems performing 

the crypto operation, via observation and/or alteration of system parts and processes. We refer to this model 

as “Gray-Box” model, where the attacker has access to the system, but he is still not allowed to access the 

key and/or to tamper with the cryptographic algorithm and its implementation. 

 

Figure 1.2 - Gray-box threat model 

1.2 White-box threat model 

The digitalization of goods and services has allowed the economy to transit to a new “Internet” era, where 

immaterial goods are digitalized and exchanged over the Internet. Examples are products for entertainment, 

such as music and movies, or the money itself, which is now available in a digital form and payments are 

performed by means of cryptographic processes based on delivered payment keys (see Figure 1.3). 

 

Figure 1.3 - Digital economy 



 

 

 

The digital nature of such goods and services allows for an infinite number of copies. For such a reason, the 

associated business models rely not so much in the availability of the good but in the authorization to actually 

use it. A user who has access to the goods, might not be able to “consume” the good unless authorized by the 

selling party. For instance: movies could not be watched without the proper key for decrypting the content, and 

payment could not be performed without the proper payment keys. 

It can be clear that, for this model to work, a user must be given access to the purchased goods but not the 

keys protecting the content. On the other hand, the user could be the attacker himself, having the interest and 

the motivation for obtaining wider and more extended access to the purchased goods, bypassing the security 

implemented. 

The Black-Box and Gray-Box threat models are insufficient for describing such a context. Both models rely on 

having two friendly parties communicating, while the attacker is none of the parties. In the described scenario, 

instead, the attacker can be one of the communicating parties, which must have limited and controlled access 

to the provided goods or service. This explains the need for a different threat model, shown in Figure 1.4, 

which we will refer to as “White-Box” model. 

 

Figure 1.4 - White-Box threat model 

In the White-Box threat model: 

• The attacker can observe the encryption process from within the system 

• The attacker can modify anything at will, including the cryptographic algorithm 

Achieving security within this model is very difficult, as the cryptographic keys used for protection are stored in 

the system and potentially available to the attacker. Protecting such keys becomes the fundamental security 

challenge and this is what white-box cryptography tries to achieve. 

 



 

 

 

1.3 White-Box Cryptography 

White-box cryptography (WBC) aims at protecting the cryptographic secrets against an attacker with full 

access to the implementation (security in a white-box context).  

Thus, a white-box cryptographic implementation is designed to be resistant against attackers that can observe 

intermediate data during the computation, attackers that can modify such intermediate data and attackers that 

can manipulate execution of the cryptographic code. 

Additionally, it might be required for white-box cryptographic implementations to provide some degree of 

binding to a particular hardware platform such that an attacker cannot lift their code and execute it within other 

platforms. An introductory article to the topic of white-box cryptography can be found in [1]. 

The first WBC implementation has been described in 2002 by S. Chow et al. [2], which showed how it was 

possible to transform the implementation of a crypto algorithm into a key-dependent implementation. The 

execution of such transformed implementation performs the cryptographic operation with the given key, 

without exposing the key itself. 

The underlying idea of WBC is to merge the key and the crypto algorithm code into a new, transformed code. 

The key is effectively hidden in the code and cannot be easily separated. WBC implementation of symmetric 

block ciphers, like AES and DES, are available both in academic literature and as commercial products. 

Additionally, some WBC suppliers offer implementations of algorithms such as RSA and Elliptic Curve 

Cryptography.  

1.3.1 WBC and Software Security 

The broad capabilities available to an attacker in the White-Box model are often addressed with 

countermeasures at multiple levels. WBC is one of these countermeasures, which addresses the problem of 

hiding the key. The abilities to inspect and modify the system at will are countered with anti-tampering 

mechanisms and program obfuscation. Device binding countermeasures are also used to avoid code lifting 

attacks and reuse of the implementation on other devices. 
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Figure 1.5 - WBC and Software Security 

Figure 1.5 provides an overview of the security countermeasures that can be found in practice, along with the 

WBC implementation. This work focuses on attacks to the WBC implementation. Additional countermeasures 

are hereby briefly described only for completeness. 

 

1.3.1.1 Anti-tampering 

Anti-tampering mechanisms are introduced in order to prevent an attacker from modifying the application and 

analyzing its behavior under modification. For example, an anti-tampering mechanism could verify the integrity 

of the software at random time intervals, and detect modifications performed on the code or on static data. 

Anti-tampering mechanisms are thus meant to prevent modification of critical parts of the application (e.g. 

license checks) and introduction of instrumentation (breakpoints, function detours, etc.) into the application at 

runtime. 

Information on software anti-tampering mechanisms can be found in [3] and [4] 

1.3.1.2 Program obfuscation 

Program obfuscation is designed to prevent reverse engineering or make the final software product 

significantly more difficult to understand for an attacker. To this end, techniques to obfuscate control flow and 

data are applied to the protected application. 

For example, a software protection suite may introduce bogus control flow transfers coupled with opaque 

predicates, in order to increase the complexity of the code. A good introduction to the topic of software 

obfuscation and reverse engineering of obfuscated code is provided in chapter 5 of [5]. 

 

 



 

 

 

1.3.2 WBC implementation overview 

The typical WBC implementation relies on the usage of key-dependent lookup tables for computing the result 

of a cryptographic operation. 

In principle, given a cryptographic operation, where the algorithm C is executed with a given key K on input I 

for computing output O: 

C(I, K) = O 

A table T, dependent on the key K, can be created such that: 

C(I, K) = Tk(I) = O 

The table T can theoretically be constructed by enumerating all the possible output of the cryptographic 

operation C, when I span all the values of the possible input space. In the case of AES, where the block size is 

128 bits, the table would have a size of 2
128

 values of 128 bits each. 

It is obviously impractical to construct such a table, but the approach shows how it can be possible to perform 

a key-dependent cryptographic operation, while making the key not available for extraction. 

In practice the tables are constructed for performing smaller computation, whenever actual key material is 

used. The tables need to be recomputed every time the key needs to be modified. Figure 1.6 shows the 

example of a fixed-key implementation of WBC. 

 

Figure 1.6 - WBC generation 



 

 

 

1.3.3 WBC construction 

The main operation to be performed when constructing a WBC implementation is to merge the given key with 

the algorithm. This is typically performed via a “partial evaluation” of the key, which pre-computes the effect of 

the key when applied within the crypto algorithm.  

Figure 1.7 shows an example of such partial evaluation. The S-Box of a given algorithm is re-computed for 

merging the key into the S-Boxes. The values of the new S-Box (T in the picture) are dependent on the actual 

key value. 

After the partial evaluation the key is not explicitly available within the system, and is now merged within the T-

Boxes. 

 

Figure 1.7 - WBC construction: partial evaluation 

Obviously, a partial evaluation alone is not sufficient for avoiding the recovery of the key. In fact, if the S-Box is 

known, the key can still be extracted via analysis of the T-Boxes. 

For such a reason, random bijections are also merged along with the key, creating an entirely different T’-box, 

which is dependent on the specific bijection used. 

A bijection B is by definition invertible: an inverse function B
-1

 exists, such that: 

B * B
-1 

= 1 

Where ‘*’ is used as the function composition operator and 1 is the identity operator. 

By merging a random bijection B along with the key, it is still possible to perform the desired operation, if the 

input data is transformed accordingly, by using the inverse bijection B
-1

. When performing the operation, the 

bijection B applied to the algorithm via the T’-box cancels out with the bijection B
-1

 applied to the data. The 

operation yields the desired computed results unaffected by the specific bijection B selected. 



 

 

 

 

Figure 1.8 - Internal encodings: bijections 

Figure 1.8 shows the described process, where two different bijections are selected, one for decoding the 

input and a second one for encoding the output. If multiple T’-boxes are chained, it is easy to visualize that 

input decoding function is the inverse of the output encoding function of the previous T’-box. We refer to these 

random encoding functions as the internal encoding of the WBC. The internal encoding accounts for the 

random configuration data visible in Figure 1.6. 

The internal encoding allows the randomization of key-dependent data, making not possible to recover the key 

without knowing the actual encoding used. It is possible, in principle, to select one single random encoding for 

the entire function, but this could allow for an easier recovery of the encoding itself, and hence the key. 

1.3.3.1 External encoding 

The internal encoding does not affect the result of the operation to be performed. The output O is provided in 

presence of the input I, regardless of the actual internal encoding selected. 

This means that the input I and the output O are not encoded and are identical to the input/output of the 

original crypto algorithm. By applying the same merging technique described in Section 1.3.3, it is possible to 

also receive transformed input and provide transformed output, as shown in Figure 1.9. 



 

 

 

 

Figure 1.9 - External encoding 

The entire AES White-Box is enclosed between two additional random encodings. We refer to them as 

external encoding. External encoding is responsible for decoding the input from the sending process and 

supplying properly encoded output to the receiving process. 

This approach requires coordination of the sending and/or receiving processes, which have to manipulate 

input and/or output according to the encodings merged within the WBC implementation. Such requirement 

makes external encoding difficult to be used in practice for some applications, like Host Card Emulation for 

mobile payment. 

1.3.4 Potential attacks 

In this section we provide an overview of some potential attacks to WBC implementations. 

1.3.4.1 Cloning or code lifting 

An attacker extracts parts of the protected application in order to execute them independently. For example, a 

white-boxed cryptographic implementation is lifted in order to create a cloned DRM client able to decrypt the 

content on a different device. 

1.3.4.2 Key recovery attacks 

In white-box cryptographic (WBC) implementations an attacker cannot directly obtain the keys from memory. 

Instead, an attacker needs to locate the WBC implementation first, understand its structure (e.g. number of 

rounds, inputs and outputs, etc.) and then attempt to extract the key. 

In terms of key extraction from WBC implementations, well-known attacks can be categorized in the following 

main classes: 



 

 

 

 Statistical analysis attacks: statistical attacks are based on observing the intermediate data used 

by a WBC implementation during its execution, and performing statistical analysis on it to retrieve 

information on the secret key.  

For this, an attacker typically observes the data at the outer rounds (i.e. first or last round) of the 

cryptographic algorithm and computes the relationship between the observed data and the data that 

an unprotected implementation would be computing. 

This class of attack is similar to side channel attacks as applied to hardware implementations of 

cryptographic algorithms. The statistical bucketing attack described in [2] is an example of such an 

attack. 

 Data manipulation attacks: manipulating data at intermediate stages within the algorithm might 

allow for retrieving information on the secret key. Typically, an attacker modifies intermediate data 

towards the end of the algorithm (usually before the last round starts) and compares correct and 

incorrect results to learn information related to the key. This class of attack is similar to fault injection 

attacks as applied to hardware implementations of cryptographic algorithms. The attack described in 

[6] is an example of such an attack.  

 Control flow manipulation attacks: it might be possible to obtain information on the key by altering 

the control flow during the execution of the WBC implementation.  

For example, in an RSA implementation based on a regular binary exponentiation algorithm, it is 

possible to determine the key by repeatedly skipping operations at the end of execution and 

observing changes to the output data [7]. This class of attack is similar to fault injection attacks as 

applied to hardware implementations of cryptographic algorithms. 

1.3.5 Additional considerations 

Attacks have been published for all the academic WBC proposals. All the published attacks focus on key 

recovery from the WBC implementation. These publications show that the knowledge of the type of applied 

transformations is sufficient for recovering the key. The concrete transformation applied and key are 

considered not to be known to an attacker. 

The requirement of knowing the transformation type is actually never met in real-life attacks against unknown 

WBC implementations. The attacker is often in front of an unknown and possibly heavily obfuscated target, 

where extracting information is difficult. 

1.3.6 Our work 

Our work focuses on using hardware attack techniques, such as Side Channel Analysis and Fault injection, for 

attacking WBC implementations. We show how those techniques can be applicable to software cryptographic 

implementations and can be ported in a natural way to the software domain. 



 

 

 

We show that this approach allows mounting practical attacks against vanilla WBC implementations. Finally, 

we show how this approach allows for a fast recovery of the key, with little or no requirement on the actual 

knowledge of the WBC itself. 

 



 

 

 

2 Differential Fault Analysis on White Box 

Cryptography 

In this chapter we discuss a technique that can be used for key extraction on White Box Cryptography 

solutions, based on injecting faults into the cipher and analyzing their effects.  

2.1 Differential Fault Analysis 

Differential Fault Analysis was first introduced in [8], which presented the attack we describe in section 2.1.1. 

The mechanics behind this type of attacks are as follows: 

1. The attacker records correct and faulty outputs. In order to generate faulty outputs, the attacker 

introduces faults during the computation of the cryptographic algorithm, typically towards the end of its 

execution (e.g. before the final round). In the case of hardware solutions, this is typically done by altering 

the environmental conditions of the device. For example, voltage gltiching or laser fault injection could be 

used to introduce faults. 

2. The attacker builds a model of the introduced faults, and performs an analysis of the collected outputs in 

order to determine the key. 

The location within the cryptographic algorithm in which faults are injected in step 1 and the analysis 

performed in step 2 above are closely related. These depend on the cryptographic algorithm under attack. 

Attacks for a number of algorithms can be found in the literature, including but not limited to DES, AES, RSA 

and several ECC algorithms. 

In the next sections we describe attacks on Triple DES and AES and discuss how to apply them to White-Box 

implementations. 

2.1.1 DFA on Triple DES 

Figure 2.1 describes the final rounds of execution of a Triple DES encryption or decryption, where the F 

function is defined as shown in Figure 2.2. Each round of execution uses a 48 bit round key. The attack works 

by recovering one round key at a time, until the complete key can be computed. 



 

 

 

 

Figure 2.1 Final rounds of a DES encryption 

 

Figure 2.2 The DES Feistel function, F 

In order to recover the last round key (K16) using a DFA attack, the attacker injects faults during the execution 

of round 15. Using the correct and faulty output, we can write the following equations: 

R16 = F(R15 , K16)  L15  

R’16 =  F(R’15 , K16)     L15 

In the above equations, the values of K16 and L15 are unknown. Combining these two equations, we obtain the 

following equation in which the only unknown is the round key K16: 

R16  R’16 = F(R15 , K16)  F(R’15 , K16) 



 

 

 

From the F function we can see that DES uses 6 round key bits to compute 4 output bits in each round, 

making it possible to solve this equation in chunks of 6 bits of the round key.  In particular, for each individual 

S-Box the following equation needs to be solved: 

(P
-1

(R16  R’16)))i =  Si(E(R15)K16i)  Si(E(R’15)K16i)  

Where E and P represent the expansion and permutation steps of the F function, respectively. This equation 

can be easily solved by exhaustive search.  

Typically this results in a number of candidates for each affected sub-key for each fault. Therefore, an attacker 

needs to iterate this process until only one candidate remains for each key.  

However, in some cases, when the faults are not injected in the exact way as expected by the attack it is 

possible to discard a correct key. Therefore, we use a counting strategy instead of discarding key candidates 

instead: for each fault, we compute the set of solutions to the equation above and increase the count for the 

respective candidates. Once all faults are analyzed, the candidate with the highest count for each sub-key is 

selected as the correct candidate.  

An example output of such an attack on the last round is shown in the following listing, in which we display the 

results for the top 4 candidates for each sub-key: 

Processing round 16: 
Best result S-Box 1: 
0, sub key: 25 (0x19), value: 1.00000 
1, sub key: 27 (0x1B), value: 0.43750 
2, sub key: 17 (0x11), value: 0.38890 
3, sub key: 24 (0x18), value: 0.33330 
Best result S-Box 2: 
0, sub key: 30 (0x1E), value: 1.00000 
1, sub key: 12 (0x0C), value: 0.35290 
2, sub key: 28 (0x1C), value: 0.33330 
3, sub key: 60 (0x3C), value: 0.33330 
Best result S-Box 3: 
0, sub key: 53 (0x35), value: 1.00000 
1, sub key: 42 (0x2A), value: 0.47620 
2, sub key: 56 (0x38), value: 0.45450 
3, sub key: 51 (0x33), value: 0.41670 
Best result S-Box 4: 
0, sub key: 48 (0x30), value: 1.00000 
1, sub key: 29 (0x1D), value: 0.22220 
2, sub key: 44 (0x2C), value: 0.21430 
3, sub key: 31 (0x1F), value: 0.21430 
Best result S-Box 5: 
0, sub key: 57 (0x39), value: 1.00000 
1, sub key: 56 (0x38), value: 0.36840 
2, sub key: 41 (0x29), value: 0.36840 
3, sub key: 40 (0x28), value: 0.35000 
Best result S-Box 6: 
0, sub key: 42 (0x2A), value: 1.00000 
1, sub key: 41 (0x29), value: 0.28000 
2, sub key: 45 (0x2D), value: 0.25930 
3, sub key: 33 (0x21), value: 0.24140 
Best result S-Box 7: 
0, sub key: 27 (0x1B), value: 1.00000 
1, sub key: 38 (0x26), value: 0.29170 
2, sub key: 39 (0x27), value: 0.29170 
3, sub key: 34 (0x22), value: 0.25000 
Best result S-Box 8: 



 

 

 

0, sub key: 12 (0x0C), value: 1.00000 
1, sub key: 28 (0x1C), value: 0.28570 
2, sub key: 21 (0x15), value: 0.27270 
3, sub key: 44 (0x2C), value: 0.27270 
Round key: 65 ED 70 E6 A6 CC 

The scores above are normalized to the top candidate for each sub-key. For example, for S-Box 8 the count 

for the second best candidate is 28.5% that of the top candidate (i.e. the top candidate was counted about 3 

times more often than the last candidate). This gives a strong confidence in the success of the attack. 

Once the last round key is known, the attack can be iterated to the previous round key. For this, the attacker 

injects faults one round earlier and computes the output of the one but last round by using the recovered last 

round key. 

If a TDES cipher is being used, the same attack can be applied to the middle DES once the final DES key is 

known. Finally, if a TDES cipher with three keys is used, the attack can be iterated to the initial DES. 

2.1.2 DFA on AES 

Several DFA attacks have been published for the AES cipher. In this whitepaper we describe the attack we 

implemented in our Inspector tool, which was introduced in [9]. Additional examples of DFA attacks on AES 

can be found in literature, e.g. in [10] [11].  

We first describe the attack on AES128, and later discuss how to extend it to AES192 and AES256. For 

AES128, the final two rounds of the encryption process consist of the following operations: 

SubBytes 

ShiftRows 

MixColumns 

AddRoundKey (K10) 

SubBytes 

ShiftRows 

AddRoundKey (K11) 

Each of these operations is defined as follows: 

• SubBytes: Each byte in the AES state is transformed by applying the AES S-Box. 

• ShiftRows: The rows in the AES state are shifted to the left by 0, 1, 2 or 3 cells (row 1 to 4). 

• MixColumns: A matrix multiplication is applied, which results in applying a 32-bit transformation to each 

column of the state. 

Let's analyze how a one-byte fault introduced before the MixColumns in round 9 propagates to the output of 

the cipher. If the first byte of the state is altered from A to X, as shown in Figure 2.3, the fault will propagate to 

the complete first column after the MixColumns operation (see Figure 2.4).  



 

 

 

 

Figure 2.3 DFA on AES: one byte fault before MixColumns 

 

Figure 2.4 DFA on AES: byte fault propagation after MixColumns 

The next steps are simply performed byte-wise, and therefore we conclude that one faulty byte before the last 

MixColumns propagates into 4 faulty bytes at the output. The final values for these 4 faulty bytes would be as 

shown in Figure 2.5. Note that these bytes would not be located within the same column at the end of the AES 

computation due to the effect of the ShiftRows operation. 

 

Figure 2.5 DFA on AES: expressions for corrupted output bytes 

For the first faulty byte, we can write the following expressions: 

S(2A⊕3B⊕C⊕D⊕K10,0) ⊕ K11,0 = O0 

S(2X⊕3B⊕C⊕D⊕K10,0) ⊕ K11,0 = O’0 

And after XOR-ing them: 



 

 

 

S(2A⊕3B⊕C⊕D⊕K10,0)⊕ S(2X⊕3B⊕C⊕D⊕K10,0) = O0⊕ O’0 

Similar expressions can be written for each of the faulty bytes, obtaining a set of 4 related equations. Just like 

in the attack for DES described above, the attack on AES involves solving these equations to obtain a sub-set 

of candidates for parts of the round key. In this case, each fault provides potential candidates for 4 bytes of the 

key.  

Repeating this process with different faults allows finding unique values for each sub-key. Repeating this 

process for the other columns of the AES state allows recovering candidates for all the sub-keys, and 

therefore leads to the last round key. 

For AES128, the last round key is enough to perform a reverse key schedule operation and retrieve the 

original AES key. For AES192 and AES256, two round keys need to be recovered in order to compute the full 

AES key. 

As mentioned earlier, the full detailed description of this attack can be found in [9]. 

2.2 DFA attacks applied to WBC 

In order to apply DFA attacks to a WBC implementation, one fundamental requirement needs to be satisfied: 

the output of the WBC needs to be available in a non-encoded form. 

Once this requirement is satisfied, the attack requires the ability to inject faults into the cryptographic process 

at the right locations within the algorithm.  

In order to locate the appropriate location in which faults need to be injected we typically combine static and 

dynamic code analysis. For example, recording execution and memory access traces and visualizing them 

can highlight the location of the target cryptographic algorithm and its rounds.  

This can be seen in Figure 2.6, which shows the memory accesses performed by an obfuscated DES cipher 

on the stack. We can clearly see the execution of 16 rounds, and therefore we are able to determine at which 

time and in which memory region faults need to be introduced. More insights into applying these types of 

techniques to obfuscated code can be found in [12] [13]. 



 

 

 

 

Figure 2.6 Stack accesses during execution of wbDES challenge from www.whiteboxcrypto.com 

Additionally, randomly injecting faults during the computation and observing the output of the cryptographic 

algorithm can be used to determine the correct location. For example, injecting bit faults in early rounds of a 

DES execution will result in a fully randomized output. Injecting bit faults during the computation of the last 

round (i.e. too late for the attack described in section 2.1.1) will result in changes to the left half, but not the 

right half. 

Similarly, for the AES cipher, injecting one-byte faults at the location expected by the attack described in 

section 2.1.2 will result in 4 corrupted bytes. The location of the 4 corrupted bytes must follow a specific 

pattern, as indicated by the MixColumns and ShiftRows combination. 

Finally, injecting faults can be as simple as flipping bits of the DES or AES intermediate results during the 

execution of the algorithms. To this end, we can use several techniques: 

• If the code can be easily lifted to a high level language (e.g. C), we can introduce code to inject random 

faults at the right locations within the algorithm. 

• If the code can be run under a DBI framework (PIN, Valgrind, etc.) we can instrument the code to the 

inject faults and collect the output data. 



 

 

 

• A scriptable debugger (e.g. vtrace, gdb) can also be used. To this end, we can write debugger scripts to 

automate the execution of the cipher, injection of faults and collect the output data. 

• Alternatively, emulator-based setups can be used. For example, we've used the PANDA framework and 

the Unicorn Engine to attack WBC implementations. We provide an example using Unicorn Engine to 

inject faults on the Wyseur challenge in section A.1.  

Once the right location is found and a way to inject faults is implemented, performing the attack is just a matter 

of collecting enough output pairs and plugging them into the appropriate DFA algorithm. 



 

 

 

3 Side Channel Analysis on White Box 

Cryptography 

This chapter discusses the implementation and effectiveness of Side Channel Analysis (SCA) on White Box 

Cryptography (WBC) solutions as described in chapter 0. First we give some background of differential attacks 

and then we show how WBC implementations can be attacked using such differential SCA. 

3.1 Side Channel Analysis and DPA 

The fact that "side channels" can leak sensitive information has understood for a long time. In the mid-nineties 

it became clear that side channels such as timing or power are also a threat to embedded cryptographic keys. 

Kocher [14] showed that by applying a technique called Differential Power Analysis (DPA) keys could be 

broken even in very noisy environments. 

The principle of differential side channel analysis can be described as: 

Validating predictions by applying statistical methods to the observed and predicted behavior of a system.  

In the case of cryptography the predictions are centered on the secret key. Within cryptographic algorithms the 

secret key is not used as a whole, but rather in computational and logical units of much smaller size than the 

total key length. This allows predictions to focus on small parts of the key at a time, in a so-called divide and 

conquer attack. 

A DPA attack can be summarized in the following steps: 

1. Choosing an intermediate result: the DPA attack targets an intermediate result of the algorithm, such 

as the output of the S-Boxes of the first round for DES or AES ciphers. These intermediate results 

typically depend on a small part of the key, such that a divide and conquer strategy can be applied. 

2. Performing measurements: Acquire a set of traces while the device is performing an encryption or 

decryption operation with random inputs. In the case of DPA, this results in a set of power traces and 

their corresponding plaintext/ciphertext pairs. 

3. Calculating hypothetical intermediate values: For each input value, all possible values of the target 

intermediate result are computed. For example, in the case of DES this would result in 64 values for 

each S-Box output. 

4. Comparing intermediate values to measurements: As a final step, the hypothetical intermediate 

values are compared to the measurement set in order to find the most likely key. This is typically done by 

applying statistical techniques such as the difference of means or the correlation coefficient. Many such 



 

 

 

statistical techniques (also known as distinguishers) have been researched by the cryptographic 

hardware security community. 

To visualize the above statements, consider a group of measurements each taken for a different random 

input. These can be grouped on any arbitrary intermediate result in order to apply a statistical distinguisher. A 

simple example is a bit of the input, but it might also be any predicted intermediate value. 

 

Figure 3.1 Principle of difference of means 

As a simple statistical test we apply a difference of means as shown in Figure 3.1. Subtraction of two means 

provides indication in the resulting difference where and if there is evidence of the bit being processed.  

The next step is translating this same method to the prediction of a value of part of the secret key. As shown in 

Figure 3.2, given the known input and a possible value for a 6-bit sub-key of the DES secret key we can 

perform the same test for one bit of the S-Box output.  

This allows testing only 64 possible candidates of which one is expected to show a significant difference in 

case of leakage. Repeating this for all 8 sub-keys yields the full round key.  

In case of DES 2 round keys are required to recover the original full key. The second round key can be 

discovered by using the recovered first round key to predict intermediate values in the second round. For 

AES-128 it is sufficient to guess 8 times an 8 bit sub-key for a full 16 byte key. 
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Figure 3.2 DES Feistel function with a 6-bit sub key 

 

3.2 SCA attacks applied to WBC 

Applying side channel attacks to a WBC implementation requires that measurements are taken during the 

execution runtime of the implementation. There are two items to be determined: 

1. What to measure 

2. How to achieve the measurement 

For the first item we have many choices. What we want to capture are the values that are computed during the 

execution of the WBC. A simple way this can be achieved is by capturing any writes to memory. Of course this 

might miss certain values that are only kept in registers.  

Capturing register updates achieves a better coverage, but it may lead to very large datasets. Another 

alternative is to snapshot the memory areas that are updated during the execution. We found that capturing 

the stack space for every round of a crypto algorithm can achieve very good results and is relatively simple. 
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Another source of leakage may be the lower bits of the read accesses as they reflect the index into the table 

lookups.  

For additional insights in options for information sources, [13] describes similar work to what we describe in 

this chapter and [15] introduces SLEAK, a simulator-based setup to analyze non-white-box cryptographic 

implementations. 

For the second item we have to consider how to obtain the data we are interested in. Again we have many 

options at our disposal. The best method is very dependent on the WBC implementation and the additional 

software protection mechanisms in place. These are methods we have employed during the analysis of 

different implementations: 

 Hooking by library and code injection (eg. LD_PRELOAD or ptrace) 

 Debugger scripting (GDB, vtrace) 

 Binary instrumentation (PIN, Valgrind) 

 (Source) Code lifting and modification (Hex-rays, python decompiler) 

 Emulator recording (QEMU, unicorn) 

We provide an example of recording side channel traces on the Wyseur challenge using Unicorn Engine in 

section 0. 



 

 

 

4 Experimental results 

In this chapter we discuss experimental results obtained while analyzing openly available WBC 

implementations. 

4.1 Analyzed WBC implementations 

For the sake of comparison, we analyze the same implementations as analyzed in [13]: 

• Wyseur challenge: this implementation was presented as a challenge by Brecht Wyseur on his website 

www.whiteboxcrypto.com. The challenge provides a white-box implementation of DES with naked inputs 

and outputs (i.e. no external encodings), compiled as an ELF for Linux/x86. 

• Hack.lu 2009 challenge: this implementation was presented as a challenge at Hack.lu 2009. The 

challenge provides a Windows executable with a white-box implementation of AES. 

• SSTIC 2012 Challenge: this implementation was presented as a challenge at SSTIC 2012. The 

challenge contains a white-box implementation of DES in Python bytecode. 

• ph4r05 white-box: this is a generator for white-box AES implementations available on GitHub. The code 

supports implementations with and without external encodings. We analyze the version without external 

encodings only.  

In addition to these openly available implementations, we have found a number of commercial 

implementations to be vulnerable to the techniques covered in this paper while performing security 

assessments on them. 

4.2 SCA Attack results 

For the SCA attacks, we run key extraction attacks against the same implementations as analyzed in [13]. The 

findings are summarized in Table 4-1. 

Table 4-1 Results of applying Side Channel Analysis to WBC implementations 

Implementation Fault injection Results 

Wyseur (DES) PIN instrumentation 60 

Hack.lu 2009 

(AES) 

Unicorn instrumentation 16 

http://www.whiteboxcrypto.com/


 

 

 

Implementation Fault injection Results 

SSTIC 2012 

(DES) 

Modified lifted python code 16 

Karroumi (AES) PIN instrumentation 2000* 

NSC 2013 

(encoded AES) 

N/A Not broken – encoding makes DFA 

not feasible 

 

Our results match the results described in [13], except for the Karroumi implementation. In this case, we 

required more traces and manual intervention in order to properly retrieve the key.  

In particular, different generations of the WBC seem to provide leakage results. As a result, we needed to 

extract different parts of the keys with attacks targeting different intermediate values (S-Box output and 

multiplicative inverse in GF(2
8
)). 

4.3 DFA Attack results 

Table 4-2 provides the results of the DFA attacks we implemented, as well as the way in which we 

implemented the attacks. 

Table 4-2 Results of applying Differential Fault Analysis to WBC implementations 

Implementation Fault injection Results 

Wyseur (DES) Unicorn emulator script Broken in 40 faults 

Hack.lu 2009 

(AES) 

Debugging script (vtrace) Broken in 90 faults 

SSTIC 2012 

(DES) 

Modified lifted code Broken in 60 faults 

Karroumi (AES) Modified source code Broken in 80 faults 

NSC 2013 

(encoded AES) 

N/A Not broken – encoding makes DFA 

not feasible 

 

As can be observed, we were able to extract the keys for all the implementations analyzed in [13] also using 

DFA attacks.  



 

 

 

 

4.4 Result analysis and comparison 

For those implementations without internal encodings, the number of executions required for DPA attacks is 

much lower than for DFA attacks. This is due to the fact that without internal encodings, there is a direct 

relationship between the hypothesis used by the DPA attack and the recorded data.  

In contrast, for those implementations with stronger internal encodings the number of executions required for 

DFA attacks is lower than for DPA attacks. 

Note however that the execution of these attacks once the measurement setup is ready can be repeated in a 

matter of minutes. Therefore, the number of traces is not really a limiting factor here, but rather the ability to 

instrument the WBC implementation and collect the right data. 



 

 

 

5 Countermeasures 

As noted earlier, general software protection techniques such as code obfuscation, anti-tampering, anti-

analysis, etc. can be used to make these attacks more difficult.   

We also note that adding external encodings prevents the direct application of the attacks we discussed. 

However, in many scenarios (e.g. payment systems) it is not possible to apply external encodings in practice. 

We elaborate further on this topic in section 5.1. 

In this chapter we discuss specific countermeasures against the attacks introduced in sections 20 and 12 in 

order to strengthen the robustness of the WBC implementation in case the generic countermeasures are 

bypassed. 

5.1 Use of external encodings 

External encodings are encodings applied at the input and/or output of the cipher. In this way, the cipher is 

converted from a standard cipher (e.g. AES) into a cipher that computes G(AES(F
-1

(input), key)), where F 

represents the input encoding and G represents the output encoding. Both input and output encodings are 

assumed unknown to the attacker. 

In such a circumstance, DPA-like attacks cannot be directly applied because the attacker is not able to predict 

the intermediate values processed by the cipher implementation. Therefore, key hypothesis cannot be tested 

using statistical analysis and the cipher is protected against standard DPA-like attacks. 

Similarly, if output encoding is present, an attacker cannot observe the exact effect of faults introduced in the 

execution of the cipher. Therefore, DFA attacks on encoded outputs are not feasible either. 

However, external encodings turn the cipher into a non-standard algorithm that depends on the encodings. 

This is fine in cases where the output of the cipher is consumed by an entity that has knowledge of the 

encodings (e.g. another white-box cipher integrated in the same application) or when the complete end to end 

system is aware of the encoding scheme used. 

In practice, this is not always the case. The following situations illustrate this: 

• Different suppliers might provide different components, for example the licensing server and the client 

application in a DRM scheme. 

• Protocols might mandate the use of non-encoded inputs or outputs. For example, in EMV transactions 

the application cryptogram is expected to be the output of an ISO9797 method 3 Message Authentication 

Code using the DES cipher. 



 

 

 

Even in cases where the recipient of the cipher output is aware of the encoding, if this process is also 

available to the attacker it might still be possible to revert the encoding. Additionally, there have been 

examples of attacks that can work even in the presence of output encoding in literature [16] [17]. 

Therefore, we do not recommend relying on output encodings alone, but also implementing specific 

countermeasures against the attacks described in this document. 

5.2 Countermeasures against DFA 

Countermeasures against DFA attacks usually involve some sort of redundant computation. For example, a 

device could perform the encryption process twice and compare its output. 

Assuming that the adversary does not have any access to the intermediate data, it is possible to detect the 

attack and prevent outputting faulty results. However, in the white-box settings this direct approach is not 

valid: if the attacker is able to observe the comparison of the two results, he can simply duplicate the faulty 

result and bypass the check. 

In order to protect a WBC implementation against DFA, the following two avenues might be used: 

• Carrying redundant data (e.g. checksums) along with the computation in such a way that a modification 

performed by an attacker can be detected, without transforming the data into a non-encoded domain. 

• Implementing the internal data encodings in such a way that faults propagate into bigger parts of the 

cipher state. In this way, the fault models expected by the standard DFA attacks do not apply and 

therefore an attacker would have to develop customized attacks. 

However, there is a lack of research into DFA countermeasures in this space, and the above ideas have not 

been extensively tested nor verified.  

 

5.3 Countermeasures against DPA 

DPA attacks are well known in the hardware security community. Significant research effort has been spent in 

developing and analyzing countermeasures against this class of attacks in the last 15 years. 

However, these countermeasures are typically developed with assumptions that are not valid in the white-box 

context. Namely: 

• It is assumed that a good source of random numbers is available. In a white-box setting, the attacker is 

under full control of the environment and can thus prevent the generation of random numbers. 

• It is assumed that secret values computed during the execution of the cryptographic algorithm are not 

available to the adversary. 



 

 

 

However, it might be very well possible to adapt some of the ideas from the DPA research community to 

protect WBC implementations. First, balanced encoding schemes could be research in order to prevent 

attacks like DPA. 

Second, as suggested in [13], carefully designed schemes based on secret sharing and masking the 

intermediate data based on the input data could be used. Since DPA attacks require random input, tweaking 

the intermediate data encoding based on the input data might provide sufficient protection against these 

attacks. 



 

 

 

6 Conclusions 

In this document we have introduced two classes of practical attacks on White-Box Cryptography 

implementations: Differential Fault Analysis attacks and attacks similar to Differential Power Analysis. 

Our results show that unhardened WBC implementations can be attacked using these generic attacks 

borrowed from the cryptographic hardware space in a very efficient manner. Our attacks can even be applied 

with very little knowledge about the WBC implementation and limited reverse engineering effort provided that it 

is possible to instrument the target application. 

Our experiences also show that it is important to test for these attacks in practice, as often the complexity of 

the WBC generation and software protection tooling results in overlooking unintentional leakage in the final 

implementation. 

This brings us to the following question: What do these results mean for WBC implementations in practice?   

First of all, we want to stress that using WBC implementations to protect cryptographic keys significantly 

increases the robustness compared to using vanilla cipher implementations. If a vanilla implementation is 

used, an attacker can simply extract the key from memory. When a WBC implementation is used, an attacker 

is forced into the realm of more specialized cryptographic attacks such as the ones we have discussed. 

Secondly, external encoding does offer additional strength. This should be considered if the cryptographic 

protocols allow this. 

Thirdly, software protection by obfuscation and anti-tamper measures can make reverse engineering and 

instrumentation more difficult. It is our experience that the preparation work required to apply side channel and 

fault attacks to a fully protected software application can take 2 to 4 weeks. 

Finally, combined with frequent updates of the software, limited key lifetimes, and risk mitigation measures in 

back-end systems, WBC technology can provide a solid layer of protection for a variety of applications. 
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A Code snippets 

In this appendix we provide example code snippets to instrument applications using Unicorn for DFA and DPA 

attacks. 

A.1 DFA example script 

The following Unicorn script can be used to collect data for a DFA attack on the wbDES challenge. The script 

produces a log file (faults.txt) with plaintext and ciphertext on each line. The first plaintext and ciphertext pair is 

always performed without injecting any fault, and is thus the reference output for the DFA attack. 

from unicorn import * 
from unicorn.x86_const import * 
import struct 
import sys 
import random 
from elftools.elf.elffile import ELFFile 
 
 
def p32(x): 
    return struct.pack("<I", x) 
 
def u32(x): 
    if len(x) != 4: 
        x = x + "\x00"*(4-len(x)) 
    return struct.unpack("<I", x)[0] 
 
def p16(x): 
    struct.pack("<H", x) 
 
def pack(x, size): 
    if size == 1: 
        return chr(x) 
    elif size == 2: 
        return p16(x) 
    else: 
        return p32(x) 
 
 
# Stack initialization data 
STACK = 0xbfff0000 
STACK_SIZE = 0x10000 
SP = STACK + STACK_SIZE - 0x800 
RET = STACK 
PAGE_SIZE = 0x1000 
 
output = [] 
evtId = 0 
 
fault = True 
 
def should_fault(evtId, targetId, fault, address, size): 
    return evtId > targetId and fault and address > STACK and address < STACK + STACK_SIZE and size 
== 1 
 



 

 

 

def hook_mem_access_fault(uc, access, address, size, value, user_data): 
    global output, evtId, fault 
    evtId += 1 
    pc = uc.reg_read(UC_X86_REG_EIP) 
 
    targetId = user_data[0] 
    if access == UC_MEM_READ: 
        value = u32(uc.mem_read(address, size)) 
        if should_fault(evtId, targetId, fault, address, size): 
            print "FAULTING AT ", targetId 
            # Already faulted this time 
            fault = False 
            # Random bit in this event 
            bitfault = 1 << random.randint(0, size*8 -1) 
            uc.mem_write(address, pack(value ^ bitfault, size)) 
 
    # At this PC the pushes a byte of output to the stack 
    if pc == 0x08049e4f: 
        output.append(value) 
 
def randstr(sz): 
    x = open("/dev/urandom") 
    rnd = x.read(sz) 
    x.close() 
    return rnd 
 
KEY16_ATTACK_START = 46000 
KEY16_ATTACK_END = 49000 
 
KEY15_ATTACK_START = 42000 
KEY15_ATTACK_END = 46000 
 
 
 
 
def main(): 
    global output, fault, evtId 
 
    # Get unicorn in 32-bit x86 mode 
    mu = Uc(UC_ARCH_X86, UC_MODE_32) 
    fd = open("faults.txt", "wb") 
    target = [0] 
    # Hook mem read and write 
    mu.hook_add(UC_HOOK_MEM_READ | UC_HOOK_MEM_WRITE , hook_mem_access_fault, user_data=target) 
 
    # Map the full PE into unicorn 
    elf = ELFFile(open("./wbDES")) 
 
    for seg in elf.iter_segments(): 
        if seg.header.p_type == "PT_LOAD": 
            # LOAD this 
            data = seg.data() 
            mapsz = PAGE_SIZE*((len(data) + PAGE_SIZE)/PAGE_SIZE) 
            addr = seg.header.p_vaddr - (seg.header.p_vaddr % PAGE_SIZE) 
            mu.mem_map(addr, mapsz) 
            mu.mem_write(seg.header.p_vaddr, data) 
 
    entry = 0x80484C4 # Our main function, from IDA 
 
    # Map zero page and a bit more, this should keep gs happy? 
    mu.mem_map(0, 0x10000) 
 
    mu.mem_map(STACK, STACK_SIZE) 
 
    num_samples = 1 
    data_bytes = 16 
 



 

 

 

    for tracenum in xrange(100): 
        target[0] = random.randint(KEY15_ATTACK_START,KEY16_ATTACK_END) 
        fault = True 
        evtId = 0 
        # set esp and ebp to their initial values 
        mu.reg_write(UC_X86_REG_ESP, SP) 
        mu.reg_write(UC_X86_REG_EBP, SP) 
 
        # Write params on stack, and create stack frame for the call 
        # plaintext = randstr(8) 
        plaintext = "\x00"*8 
 
        start = 0x100 
        mu.mem_write(SP+start, "./wbDES\x00") 
        argv = [SP+start] 
        start += 10 
        for i in xrange(len(plaintext)): 
            argv.append(SP+start) 
            mu.mem_write(SP+start, "%.2x\x00" % ord(plaintext[i])) 
            start += 5 
 
        # Now we need to place argv somewhere 
        i = 0 
        for arg in argv: 
            mu.mem_write(SP+0x200 + i*4, p32(arg)) 
            i += 1 
        # And NULL 
        mu.mem_write(SP+0x200+i*4, p32(0)) 
 
        # And now main's return address and parameters 
        mu.mem_write(SP+0x0, p32(RET)) # Return address @ sp 
        mu.mem_write(SP+0x04, p32(len(argv))) # argc 
        mu.mem_write(SP+0x08, p32(SP + 0x200)) # argv 
 
        # Patch printf and putchar .plt --> return 
        mu.mem_write(0x80483BC, "\xc3") 
        mu.mem_write(0x80483EC, "\xc3") 
 
        output = [] 
        try: 
 
            # And now run the emulator until we hits our RET 
            if tracenum == 0: 
                fault = False 
            mu.emu_start(entry, RET) 
            ciphertext = "".join(map(chr, output)) 
 
            fd.write((plaintext.encode("hex") + ciphertext.encode("hex")) + "\n") 
            print "FINISHED ", tracenum 
        except: 
            print "ERROR" 
            pass 
 
 
if __name__ == '__main__': 
    main() 
 
 
 
 
 
 

  



 

 

 

A.2 DPA example script 

The following Unicorn script can be used to collect data for a DPA-like attack on the wbDES challenge. The 

script produces two files: traces.bin contains the traced data, while data.bin contains the input and output of 

the DES operation. 

from unicorn import * 
from unicorn.x86_const import * 
import struct 
import sys 
import random 
from elftools.elf.elffile import ELFFile 
 
def p32(x): 
    return struct.pack("<I", x) 
 
def u32(x): 
    if len(x) != 4: 
        x = x + "\x00"*(4-len(x)) 
    return struct.unpack("<I", x)[0] 
 
def p16(x): 
    struct.pack("<H", x) 
 
def pack(x, size): 
    if size == 1: 
        return chr(x) 
    elif size == 2: 
        return p16(x) 
    else: 
        return p32(x) 
 
 
# Stack initialization data 
STACK = 0xbfff0000 
STACK_SIZE = 0x10000 
SP = STACK + STACK_SIZE - 0x800 
RET = STACK 
PAGE_SIZE = 0x1000 
 
output = [] 
evtId = 0 
 
 
def hook_mem_access_dpa(uc, access, address, size, value, user_data): 
    fd = user_data 
    if access == UC_MEM_WRITE and size == 1: 
        # For writes we keep the data only 
        d = p32(value) 
        fd.write(d[:size]) 
    # elif access == UC_MEM_READ: 
    # if access == UC_MEM_READ: 
        # For reads we keep the lowest byte of the address + the data 
        # Let's try a fault here 
        # fd.write(chr(address & 0xFF)) 
        # fd.write(uc.mem_read(address, size)) 
 
    # And get the output 
    pc = uc.reg_read(UC_X86_REG_EIP) 
    if pc == 0x08049e4f: 
        output.append(value) 
 
 
def randstr(sz): 



 

 

 

    x = open("/dev/urandom") 
    rnd = x.read(sz) 
    x.close() 
    return rnd 
 
def main(): 
    global output, fault, evtId 
 
    # Get unicode in 32-bit x86 mode 
    mu = Uc(UC_ARCH_X86, UC_MODE_32) 
  
 # open the trace data files 
    fd = open("traces.bin", "wb") 
    fd2 = open("data.bin", "wb") 
 
    # Hook mem read and write 
    mu.hook_add(UC_HOOK_MEM_READ | UC_HOOK_MEM_WRITE , hook_mem_access_dpa, user_data=fd) 
 
    # Map the full PE into unicorn 
    elf = ELFFile(open("./wbDES")) 
 
    for seg in elf.iter_segments(): 
        if seg.header.p_type == "PT_LOAD": 
            # LOAD this 
            data = seg.data() 
            mapsz = PAGE_SIZE*((len(data) + PAGE_SIZE)/PAGE_SIZE) 
            addr = seg.header.p_vaddr - (seg.header.p_vaddr % PAGE_SIZE) 
            mu.mem_map(addr, mapsz) 
            mu.mem_write(seg.header.p_vaddr, data) 
 
    entry = 0x80484C4 # Our main function, from IDA 
 
    # Map zero page and a bit more, this should keep gs happy? 
    mu.mem_map(0, 0x10000) 
 
    mu.mem_map(STACK, STACK_SIZE) 
 
    prevSize = 0 
 
    for tracenum in xrange(15000): 
        evtId = 0 
        # set esp and ebp to their initial values 
        mu.reg_write(UC_X86_REG_ESP, SP) 
        mu.reg_write(UC_X86_REG_EBP, SP) 
 
  # initialize random input data 
        plaintext = randstr(8) 
 
        # Write params on stack, and create stack frame for the call 
        start = 0x100 
        mu.mem_write(SP+start, "./wbDES\x00") 
        argv = [SP+start] 
        start += 10 
        for i in xrange(len(plaintext)): 
            argv.append(SP+start) 
            mu.mem_write(SP+start, "%.2x\x00" % ord(plaintext[i])) 
            start += 5 
 
        # Now we need to place argv somewhere 
        i = 0 
        for arg in argv: 
            mu.mem_write(SP+0x200 + i*4, p32(arg)) 
            i += 1 
        # And NULL 
        mu.mem_write(SP+0x200+i*4, p32(0)) 
 
 



 

 

 

        # And now main's return address and parameters 
        mu.mem_write(SP+0x0, p32(RET)) # Return address @ sp 
        mu.mem_write(SP+0x04, p32(len(argv))) # argc 
        mu.mem_write(SP+0x08, p32(SP + 0x200)) # argv 
 
        # Patch printf and putchar .plt --> return 
        mu.mem_write(0x80483BC, "\xc3") 
        mu.mem_write(0x80483EC, "\xc3") 
 
        output = [] 
        try: 
 
            # And now run the emulator until we hits our RET 
            mu.emu_start(entry, RET) 
 
   # capture the output data 
            ciphertext = "".join(map(chr, output)) 
            data_array = map(ord, str(plaintext + ciphertext)) 
 
            print "TRACE " , tracenum, ":", str(plaintext).encode("hex") , " --> ", 
str(ciphertext).encode("hex"),  
 
   # print the number of samples used for importing 
            fd2.write(str(plaintext + ciphertext)) 
            currSize = fd.tell() 
            traceSize = currSize - prevSize 
            prevSize = currSize 
            print ", samples: ", traceSize 
        except: 
            print "ERROR" 
            pass 
 
    fd.close() 
    fd2.close() 
 
 
if __name__ == '__main__': 
    main() 
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