
1

Efficient Reverse

Engineering of

Automotive Firmware

Alyssa Milburn

Security Analyst, Riscure

milburn@riscure.com / @noopwafel

(with Niek Timmers)

mailto:milburn@riscure.com

2

Reverse Engineering

Getting

Firmware

IP

Tuning /

manipulation

Efficient Reverse Engineering of Automotive Firmware

Hacking

???

Reverse

Engineering
Understanding

3

Automotive Firmware?

4

Instrument Cluster

• Speedometer/gauges
• Display (screen)
• Speaker!
• Blinky lights!

• 32-bit CPU
• CAN bus
• I2C bus

• EEPROM

5

How can we get the firmware?

Efficient Reverse Engineering of Automotive Firmware

External

flash

Debug

interfaces

Leaks

Software

vulnerabilities

Hardware

attacks

6

What makes this challenging?

• “Non-standard” platforms

• New concepts

• Complexity

Efficient Reverse Engineering of Automotive Firmware

7

8

What makes this challenging?

No tools?! Let’s make some!

• Static analysis (disassembly): too complicated

• Dynamic analysis (emulation / debugging): no tools?

Efficient Reverse Engineering of Automotive Firmware

9

What do we need?

• Processor (instruction set) emulator

• Timers, interrupts

• CAN controller

• I2C controller

• EEPROM
• Display controller

Efficient Reverse Engineering of Automotive Firmware

10 Efficient Reverse Engineering of Automotive Firmware

Emulating the CPU architecture

11

“Implementing” peripherals

Efficient Reverse Engineering of Automotive Firmware

12

How difficult was it?

~ 1 man-week of work

~ 3000 lines of (terrible) code
 (excluding support tooling)

Efficient Reverse Engineering of Automotive Firmware

13

Dynamic
analysis

14

Debugging

Efficient Reverse Engineering of Automotive Firmware

Step!

Break!

Watch!

gdb
“stub”

gdb

15

Debugging

(gdb) hbreak *0x11032
Hardware assisted breakpoint 1 at 0x11032

(gdb) c
Continuing.

0x00011032 in ?? ()
(gdb)

Efficient Reverse Engineering of Automotive Firmware

16

Execution tracing

Efficient Reverse Engineering of Automotive Firmware

17

Execution tracing

Efficient Reverse Engineering of Automotive Firmware

0x02920
0x02922 (jump)
0x02926
0x02928
0x0292c
0x02930

18

Execution tracing

Efficient Reverse Engineering of Automotive Firmware

0x02920
0x02922 (jump)
0x02926
0x02928
0x0292c
0x02930

19

Execution tracing

Efficient Reverse Engineering of Automotive Firmware

20

Execution tracing

Efficient Reverse Engineering of Automotive Firmware

21

Hacks!

Efficient Reverse Engineering of Automotive Firmware

22

Hacks!

Efficient Reverse Engineering of Automotive Firmware

23

Initial state

Running (booted)

Send CAN message

Observe CAN response

State rewinding

100ms boot time

Efficient Reverse Engineering of Automotive Firmware

24

Taint tracking

Efficient Reverse Engineering of Automotive Firmware

1 ??

2 ??

3 ??

4 ??

5 ??

6 ??

7 ??

8 ??

CAN message Data[2] =
CAN.read()

Data[7] =
Data[2]

CAN message

CAN message

Data[7] == Y?

25

Fuzzing

Efficient Reverse Engineering of Automotive Firmware

CAN message
Memory

Memory[5] == 0xc7?

Path 1 Path 2

26

./cc.py dcm discovery

CARING CARIBOU v0.1

Starting diagnostics service discovery
Found diagnostics at arbitration ID 0x????,
reply at 0x????

UDS

Efficient Reverse Engineering of Automotive Firmware

27

UDS: security access

Efficient Reverse Engineering of Automotive Firmware

Random key
Random key ==

calculateKey(seed)?

We found calculateKey!

Seed (challenge)

28

UDS: security access

sending requestSeed (0x3)
CAN0: RCV [id ####] 02 27 03 aa aa aa aa aa
CAN0: TRQ [id ####] 06 67 03 47 2e 8e 70 aa
sending sendKey
CAN0: RCV [id ####] 06 27 04 41 9b 35 42 aa

comparison at 0002f390 (419b3542 vs
419b3542) is tainted with 000000c0

CAN0: TRQ [id ####] 02 67 04 aa aa aa aa aa

Efficient Reverse Engineering of Automotive Firmware

29

EEPROM contents

Efficient Reverse Engineering of Automotive Firmware

Reverse engineering is hard work!

updateEEPROM(id, value)

Identification
(VIN)

Features/
configuration

(UDS) security
state

Odometer 

30

Takeaways

Efficient Reverse Engineering of Automotive Firmware

• Reverse engineering is not so hard!

• Lots of other “tricks” to try:

• Symbolic execution
• Deobfuscation (if necessary)
• Smarter fuzzing

• You can’t hide secrets in firmware:

• Use asymmetric cryptography (i.e. public keys)
• Use the secure hardware inside modern processors

31

Thanks to…

Efficient Reverse Engineering of Automotive Firmware

Santiago Cordoba

Eloi Sanfelix

Ramiro Pareja

32

Challenge your security

Alyssa Milburn

Security Analyst, Riscure

milburn@riscure.com / @noopwafel

Efficient Reverse Engineering of
Automotive Firmware

icons8.com

• Training

• Tools

• Services

mailto:milburn@riscure.com
icons8.com

