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Reverse Engineering 

Getting 

Firmware 
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Tuning / 

manipulation 

Efficient Reverse Engineering of Automotive Firmware 

Hacking 
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Engineering 
Understanding 
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Automotive Firmware? 
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Instrument Cluster 

• Speedometer/gauges 
• Display (screen) 
• Speaker! 
• Blinky lights! 

 
• 32-bit CPU 
• CAN bus 
• I2C bus 

• EEPROM 
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How can we get the firmware? 
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External 

flash 

Debug 

interfaces 

Leaks 

Software 

vulnerabilities 

Hardware 

attacks 
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What makes this challenging? 

• “Non-standard” platforms 

• New concepts 

• Complexity 
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What makes this challenging? 

No tools?! Let’s make some! 

• Static analysis (disassembly): too complicated 

• Dynamic analysis (emulation / debugging): no tools? 
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What do we need? 

• Processor (instruction set) emulator 

 

• Timers, interrupts 

• CAN controller 

• I2C controller 

• EEPROM 
• Display controller 
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Emulating the CPU architecture 
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“Implementing” peripherals 
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How difficult was it? 

~ 1 man-week of work 
 
~ 3000 lines of (terrible) code 
 (excluding support tooling) 
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Dynamic 
analysis 
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Debugging 
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Step! 

Break! 

Watch! 

gdb 
“stub” 

gdb 



15 

Debugging 

(gdb) hbreak *0x11032 
Hardware assisted breakpoint 1 at 0x11032 
 
(gdb) c 
Continuing. 
 
0x00011032 in ?? () 
(gdb) 

Efficient Reverse Engineering of Automotive Firmware 



16 

Execution tracing 
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Execution tracing 
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0x02920 
0x02922 (jump) 
0x02926 
0x02928 
0x0292c 
0x02930 



18 

Execution tracing 
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0x02920 
0x02922 (jump) 
0x02926 
0x02928 
0x0292c 
0x02930 
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Execution tracing 
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Execution tracing 
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Hacks! 
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Hacks! 
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Initial state 

Running (booted) 

Send CAN message 

Observe CAN response 

State rewinding 

100ms boot time 
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Taint tracking 
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1 ?? 

2 ?? 

3 ?? 

4 ?? 

5 ?? 

6 ?? 

7 ?? 

8 ?? 

CAN message Data[2] = 
CAN.read() 

Data[7] = 
Data[2] 

CAN message 

CAN message 

Data[7] == Y? 
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Fuzzing 
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CAN message 
Memory 

Memory[5] == 0xc7? 

Path 1 Path 2 
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./cc.py dcm discovery 
   
CARING CARIBOU v0.1   
-------------------   
Starting diagnostics service discovery   
Found diagnostics at arbitration ID 0x????, 
reply at 0x???? 

UDS 
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UDS:  security access 
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Random key 
Random key == 

calculateKey(seed)? 

We found calculateKey! 

Seed (challenge) 
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UDS:  security access 

sending requestSeed (0x3) 
CAN0: RCV [id ####] 02 27 03 aa aa aa aa aa 
CAN0: TRQ [id ####] 06 67 03 47 2e 8e 70 aa 
sending sendKey 
CAN0: RCV [id ####] 06 27 04 41 9b 35 42 aa 
 

comparison at 0002f390 (419b3542 vs 
419b3542) is tainted with 000000c0 
 
CAN0: TRQ [id ####] 02 67 04 aa aa aa aa aa 
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EEPROM contents 
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Reverse engineering is hard work! 

updateEEPROM(id, value) 

Identification 
(VIN) 

Features/ 
configuration 

(UDS) security 
state 

Odometer  
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Takeaways 
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• Reverse engineering is not so hard! 

• Lots of other “tricks” to try: 

• Symbolic execution 
• Deobfuscation (if necessary) 
• Smarter fuzzing 

• You can’t hide secrets in firmware: 

• Use asymmetric cryptography (i.e. public keys) 
• Use the secure hardware inside modern processors 
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