
1

True Code
Automated security

vulnerability checks

2

POINTER : TIME OF
CHECK
– TIME OF USE

 This check searches for pointers which
are dereferenced more than once

 The check is most effective if the
context that the check uses contains
security sensitive code sections

If a pointer is coming from an untrusted
environment and an attacker can change the
pointer value between the time of check and
the time of use, this introduces a security
vulnerability

void public_function(uint8_t* index, uint8_t value) {

if (*index < array_size) {

array[*index] = value; //2nd dereference

}

}

Code example

The configuration of this check

accepts a list of functions to exclude.

This will reduce the number of false

positives
!

3

FUNCTION ARGUMENT
VALIDATION

 This code check searches for missing
argument validation in function paths

 The configuration of the check allows to
configure the start and end of a
function path

The value of an argument in a function call may
be out of range. This can cause overflows or
other unexpected behavior that can be
exploited by an attacker

void func_decl(int l, int k) {

if (k > 0) {

func(k, l); //range l not checked in path

}

}

void func(int a, int b){

func_call(a, b); //range l not checked in path

}

Code example

All checks can be configured to

run multiple times. Each time on

a different set of context!

4

INTEGER OVERFLOW
VALIDATION

 The code check searches for integer or
similar type function arguments

 For these arguments the check
searches for appropriate range checks

 Multiplications and shift left are taken
into account

Integer multiplication may lead to integer
overflow. This results in a vulnerability that
can be exploited by an attacker

Code example

The results of any check are

added to a database of your

choice. All users of True Code

immediately see the

vulnerabilities marked in the code

base they are working on

!

int func_1(int k) {

return k * 256; //int multiply without

prior validation

}

5

RETURN VALUE
USAGE CHECK

 Context can be set for this check so that only
functions important for the security of the
application are validated

 A threshold can be set so that only exceptional
coding patters trigger a warning

Security functions usually have a return type that
can be used by the caller to verify if the function
ended normally and to decide how to proceed
based on the outcome of the function. Not
checking the return value of a security function can
introduce unwanted behavior that can be exploited
by an attacker.

Code example

Based on a threshold of 66% these functions

would be flagged not to use the return type

int func_1(int k) {

return k + 2;

}

void func_2() {

int l = func_1(1); //33%

int m = func_1(2); //33%

func_1(3); //return not used against

66%

...

}

Function func_1 is used 3

times

6

FOR LOOP STEP
ALIGNMENT

Memory access validation is required before a memory
copy, read or write is performed to prevent attackers to get
unintended access. For an accurate validation, validation
addresses need to be aligned with the full read or write
memory range. In example below, the validation at orange
arrow needs to be performed to validate copy, read or
write into Page 3.

Code example

void for_func(int start, int length, int step) {

int a;

for (a = start; a < end; a += step) {

//finding: step size not aligned

check_func(a);

}

for (a = start; a < end; a += step) {

//no finding: step used in loop

func(a, step);

}

for (a = start; a < end; a += step) {

//no finding: step size aligned

check_func(a);

step = MIN(end - a - 1, step);

}

}

7

EMPTY BRANCH

 This check searches for empty branches in the
code base

 The check can be configured to omit empty
branches with a comment or a TODO marker

Empty branches need to be avoided. Attackers can
make use of empty branches by jumping to this
part of the code and in that way not triggering any
of the intended behavior in one of the other
branches

Code example

int* func(int* p, int* k) {
if (!p) {

NULL; // Empty branch, unused value
} else if (!k) {

return NULL; +
} else {

//ignore
// Comment prevents warning

}
}

8

UNEXPECTED
RETURN VALUE

 This check can operate on complex structures
within a function to determine missing or
unintended return values

 Conditional branches are taken into account

The return value of a function may indicate a function
success or failure. For each function exit, this return
value needs to represent the correct status. An update
of this return value may be missing by accident. This
can cause the caller of a function to make the wrong
decision and give an attacker an opportunity to get
unintended access

Code example

9

LOW HAMMING
DISTANCE RETURN
VALUES

 Prevent fault injection attacks to influence
important decisions in your software

 Set the minimal threshold on hamming
distance to find exploitable vulnerabilities

Fault injection is a technique to influence code execution
by physically glitching the machine during program
execution. Examples of physical glitches are voltage
glitching, clock glitching, electromagnetic or laser pulses.
A potential fault is bit flipping (one to zero or vice versa)
of bus or register data. Controlled flipping of multiple bits
becomes more difficult if the number of bits increases.

Code example

Vulnerability will be found when

minimal hamming distance is set to 2

bool func(int k, int l) {

if (k > m) {

return false; //return value set to false (0x0)

}

else {

return true; //return value set to true (0x1)

}

}

10

DOUBLE CHECK
FUNCTION RETURN
STATUS

 Prevent fault injection attacks to skip
important decisions in your software

 Check for single variable checks leading to a
function exit

 Improve the robustness of your code against
advanced attacks

Fault injection is a technique to influence code
execution by physically glitching the machine during
program execution. A potential fault is instruction
skipping like skipping a conditional branch instruction
For skipping a specific instruction, precise glitch timing
is essential. Obviously, skipping two specific
conditional branch instructions is more difficult than
one.

Code example

See all found vulnerabilities

integrated in your development

environment.

True Code is integrated with Eclipse

IDE

!

Riscure B.V.
Frontier Building, Delftechpark 49

2628 XJ Delft

The Netherlands

Phone: +31 15 251 40 90

www.riscure.com

Riscure North America
550 Kearny St., Suite 330

San Francisco, CA 94108 USA

Phone: +1 650 646 99 79

inforequest@riscure.com

Riscure China
Room 2030-31, No. 989, Changle Road, Shanghai 200031

China

Phone: +86 21 5117 5435

inforcn@riscure.com

Challenge your security

http://www.riscure.com/
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com

