True Code

Developer tooling to get security
right.

Driving secure development efficiency through
collaboration & automation

riIscurc

(lode A’?@
@ _style(ung o
LS disablestyle()ir.

ut= Fur
‘ion isal
'e:sty ;’=

~hle:style

WHY WE STARTED IT

Security vulnerabilities in software have led to numerous exploits in
the last years. The fact that the size of software running on devices is
becoming bigger and bigger as well as the number of use cases that
need to be supported only makes it more likely that future exploits

will increase.

To prevent hacks that bring down customer trust or can cause
revenue loss because of piracy and are costly to mitigate after
product releases, software needs to be evaluated.

Up until now, the best evaluation process is a highly manual task
with a security expert, which results in high costs and long lead
times. It is also quite common that an evaluation takes place at the
end of the development cycle causing up to 100x higher costs to
resolve issues, as opposed to when an issue would have been found
in the development phase.

Separate from a manual evaluation, there are also automated code
check tools. However, from what we see in many manual
evaluations, the tools being used focus on code quality standards, do
not find the critical problems and often report irrelevant ones.

Wi,

RS

A
<]

s>

THE PRODUCT e
[
ﬁ fs_dirfie.c
é fs_htree.c
We developed True Code. 3 .o st
A tool purely focused on finding security b e
gt - . g tee:ls:m(_mdlmc
vulnerabilities in source code and enabling : =
natural collaboration between security -
evaluators and the development team to . E——
— tea_time_generic.c
discover vulnerabilities as early as possible i)
and boost efficiency to resolve issues.
Reviewed | Total lines of code | 23 [163242

v' Save costs by finding vulnerabilities early
in the development process and solve
issues in the most efficient way

v' Combine manual and automated reviews

v/ Easy integration in your software
development lifecycle

v' Security experts and developers both
work in the same environment

v' Integrated in Eclipse or stand-alone to use
with any IDE of choice

THE
CHALLENGES IT
SOLVES

Save time and costs

Finding vulnerabilities and issues during the development phase
and immediately resolving them can be up to a 100 times cheaper
compared to doing the same later in the process. Tr ue Code
brings this promise within reach through a tight integration in the
development, sharing found vulnerabilities instantly with all team
members. True Code integrates tightly with the development
environment that is used by your team and integrates with any other
SLD tools to automate as much as possible

Combine expert knowledge and automation

Expert knowledge is needed to find vulnerabilities in a code base.
We have used years of experience obtained during manual code
reviews to strengthen the automated vulnerability finding capabilities
of True Code so that it finds ‘real’ issues instead of false positives.
Next to that we strongly believe that to achieve the highest level of
security a combination of automated checks and expert manual
code review gives the best results. In order to achieve this, both
kinds of checks are done from the same platform and this is also the
platform used by the developers. This encourages collaboration
between all teams working together in delivering the product.

True code options easily available and

integrated in the IDE

6 eclipse-workspace - OP_TEE/core/tee/fs_dirfile.c - Eclipse

File Edit Source Refactor Navigate Search Project TC-A Run Window Help

. |~ ~i@ s G @ BN Gt~
I Project Explorer 52 B S| ¥ =B [
i onTeE =]

TEE_Result te

4 & core 132
. & arch '
» (= drivers

» & include 36
» (= kernel 37
: & lib 38
4 = tee 39
- = se 40

@ fs_dirfile.c j;

=l fs_dirfile.ll a3

(@ fs_htree.c = a4

=l fs_htree.ll 45

TEE_Result tee_fs_dirfile_open(bool create, uints_t *hash,
fons *fops,
struct tee

TEE_Result res;
struct tee fs_dirfile dirh *dirh = calloc(l, sizeof(*dirh));
size_t n;

if (1dirh)
return TEE_ERROR_OUT_OF_MEMORY;

dirh->fops = fops;
res = fops->open(create, hash, NULL, MULL, &dirh->fh);
if (res)

got:

for (n = 0;; nes) {
struct dirfile_entry dent;

res = read_dent(dirh, n, &dent);
if (res) {
if (res == TEE_ERROR_ITEM_NOT_FOUND)
res = TEE_SUCCESS;
goto aut
}

TEE_Resul
struct t¢
size_t n;

if (ldirt
retu

dirh->for
res = for
if (res)
goto

Color schemes help to easily identify different types
of found vulnerabilities for everyone in the team

THE
CHALLENGES IT
SOLVES

Context driven to reduce false positives

Context is a center point in True Code. For efficient checking
of security vulnerabilities, context, basically a way to flag
certain parts of your code base, is necessary. True Code
allows you to define as much context as you need and has a
rule based system to help you.

After context definition you can choose to run a code check
on 1 specific context, all defined context or a subset.

Easy to configure

Setting up and configuring a code analysis tool can be a real
burden for a development team. We have made this as
smooth a possible, guaranteeing a minimal amount of effort
to get started and a fast learning curve for the users.

To run the automated code checks, True Code will need to
compile your sources, but providing a compilation database
is sufficient to direct True Code to execute this compilation
step. To start working with the collaboration features: choose
your database , configure True Code to make use of this and
you are good to go!

Setting up prerequisites for compilation needed for the

automated checks is easy and straight forward

Clang compitation configuration

= i

Clang arguments Compilation database System include Include paths Precompiler headers

Arguments - - Indudes Precompller

Add configuration

v X

v

Set your code base to start working with True
Code

Code base and database settings

File extensions for code base <, h, cc, cpp, Cppl

Code base selection Select project names and parent folders

L > AST header file

Storage of annotated code segments and code check reports.

Annotation database file paths

Database for manual annotati... C:\Users\erwin\edlipse-workspace\op-tee_v5.db

—> Database for code checks C:\Users\erwin\eclipse-workspace\op-tee_v5_cc.db

Optional database for ‘reviewed' C:\Users\erwin\eclipse-workspace\op-tee_v5_rv.db

Optional database for ‘comme.

ion pan... |Information panel for saving and confirmation panel for removal

Code storage mode Include code segment and code check report with updated annotations ~

Remove code Remove all code segments and code check reports from database

Choose the database that you want to

choose for storing found vulnerabilities

THE
CHALLENGES IT
SOLVES

Enabling ‘live code reviews’

Manual code reviews are usually planned at the end of the
development process. This means that solving found issues will
be done long after the problem was introduced. True Code
solves this issue by supporting ‘live reviews’. In this way, the
evaluation team can work along with the development team
while True Code helps keeping an overview which parts of the
code have been reviewed and where the development team
have made changes. This will make sure that the development
team as well as the evaluation team both work as efficient as
possible with review & fix time savings up to 30%.

Make extensive reporting obsolete

Reporting can consume a lot of time from the evaluation team.
That's why True Code keeps track of all issues, as well as
progress with regard to solving them, in a database. Obviously
this database can be queried with any SQL tool available, but
True Code also has an option to generate a report based in
database content. This saves valuable time from the evaluation
team that instead can focus on security issues.

Each code check can have its own specific

configuration making sure that the check runs as
efficient as possible

o v m
o v m
o v m
o v m

Pointer time of check - time of use
Function argument validation
Integer overflow validation

Return value usage check

Dataflow visualization helps to more easily identify

security vulnerabilities when manually checking

14 int crypto_hash(unsigned char *out,const unsigned char *in,unsigned long long inlen)
51

13{
16 unsigned char h[32];

17 unsigned char padded[128];

18 int i;

19 unsigned long long bits = inlen << 3;

21 for (i = @;i < 32;++) h[i] = iv[i];

23 blocks(h,in,inlen);
24 inm += inlen;
25 inlen &= 63;
26 in -= inlen;

28 for (i = 8;i < inlen;++i) padded[i] = in[i];
29 padded[inlen] = @x3@;

UNIQUE FEATURES

Save costs and reduce time to market

True code makes sure that you find vulnerabilities during
development. Next to the automated checks that can be
executed on a daily bases, True Code also facilitates
collaboration with security experts in the development phase.
Reducing (certification) costs and allowing you to reach your
goals faster.

Fault injection vulnerability checks

Fault injection proves to be a method that is used often by
attackers. True Code indicates specific vulnerabilities in source
code related to fault injection

A pure security product

Many of the static code analysis products out in the market
focus on a lot of things that might be of interest to a
development team. Not True Code. True code is made for
security purposes only with people who have a long track record
in code evaluations and excel in security expertise. From
collaboration to automated checks... it is intended to be the best
at security, period.

2 edlipse-workspace - OP_TEE/coreftee/tee_sve_cryp.c - Ecnpse-_ - - -

File Edit Source Refactor Navigate Search Project TC-A Run Window Help

Bl e - & i@ s G

[& Project Explorer &
4 tee
- se

fs_dirfile.c

£ fs_dirfile.l

fs_htree.c

1= fs_htree.ll

@ sub.mk

[@ tee_cryp_concat_kdf.c

|2 tee_cryp_concat_kdf.ll

tee_cryp_hkdf.c

[tee_cryp_hkdfll

tee_cryp_pbkdf2.c

15 tee_cryp_pbkdf2.Il

[@ tee_cryp_utl.c

12 tee_cryp_utlll
tee_fs_key_manager.c
tee_fs_key_manager.l
tee_fs_rpc_cache.c

= tee_fs_rpc_cachelll
tee_fs_rpcc

= tee_fs_rpcll
tee_obj.c
tee_objll

= tee_pobj.ll
tee_ree_fs.c

= tee_ree_fsll
tee_rpmb_fs.c
tee_rpmb_fs.ll
tee_svc_cryp.c

= tee_svc_cryplll
tee_svc_storage.c

= tee_svc_storagell
tee_svec

£ tee_svcll

tee_time_generic.c

tee_pobj.c
E;
E;

[tee_time_generic.ll
[wuid.c

- EBNgraivdr@rivOrv@eE-@rime sy

EG|e =0

m

fs_dirfile.c

}

static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,

driver.c
if (o->busy)

RN IER IS S 2

[¢] tee_svc_cryp.c 22 | [d tee_cryp_pbkdf2.c

return TEE_ERROR_ITEM_NOT_FOUND;

tee_obj_close(to_user_ta_ctx(sess->ctx), 0);

return TEE_SUCCESS;

TEE_Result res;

struct tee_ta_session *sess;

struct tee obj *o;

- Result syscall_cryp_obj_reset(unsigned long obj)

‘res = tee_ta_get_current_session(&sess);

if ((res |= TEE_SUCCESS)|
return res;

res = tee obj_get(to_user_ta ctx(sess->ctx),
tee_svc_uref_to_vaddr(obj), &o);

if (res != TEE_SUCCESS)
return res;

v

if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == @) {

tee_obj_attr_clear(o);
o-»info.keySize = 0;

o-»info.objectUsage = TEE_USAGE_DEFAULT;

} else {

return TEE_ERROR_BAD_PARAMETERS;

/* the object is no more initialized */

o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;

return TEE_SUCCESS;

const struct utee_attribute *usr_attrs,

te Settings Help
2:Annotations X
6:Code Checks %

S:Context %

Code check preparations:
Index code base for function definitions
Context generator for functions and globals.
Parse Makefile for precomplier header file
Clang compllation configuration

Code checkers
Clang Static Analyzer and complier diagnostics
Pointer time of check - time of use
Function argument validation

Integer overflow validation

]

o000

e Nt32_t attr_count, TEE_Attribute *attrs)

2:Relocate & Updatex

res;
iLogging X

v

v

v

v 2}

v 2}

v 2}

v B

Writabl

Security experts

USE CASE : COLLABORATION

developed team

True Code

Developers intuitive

Security experts efficient

changed

USE CASE : AUTOMATION

[|
True code
continuous
Revelopers intuitive ’ automatically

security team

efficient

riIsCurcC

Challenge your security

http://www.riscure.com/
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com

